Saturday, October 29, 2022
HomeMicrobiologyTumour microbiomes and Fusobacterium genomics in Vietnamese colorectal most cancers sufferers

Tumour microbiomes and Fusobacterium genomics in Vietnamese colorectal most cancers sufferers


  • Bray, F. et al. World most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J. Clin. 68, 394–424 (2018).

    PubMed 

    Google Scholar
     

  • Arnold, M. et al. World patterns and traits in colorectal most cancers incidence and mortality. Intestine 66, 683–691 (2017).

    PubMed 

    Google Scholar
     

  • Keum, N. N. & Giovannucci, E. World burden of colorectal most cancers: rising traits, danger components and prevention methods. Nat. Rev. Gastroenterol. Hepatol. 16, 713–732 (2019).

    PubMed 

    Google Scholar
     

  • Schirmer, M. et al. Linking the human intestine microbiome to inflammatory cytokine manufacturing capability. Cell 167, 1125–1136.e8 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Track, M. & Chan, A. T. Environmental components, intestine microbiota, and colorectal most cancers prevention. Clin. Gastroenterol. Hepatol. 17, 275–289 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Castellarin, M. et al. Fusobacterium nucleatum an infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostic, A. D. et al. Genomic evaluation identifies affiliation of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal most cancers. Intestine 66, 633–643 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals international microbial signatures which are particular for colorectal most cancers. Nat. Med. 25, 679–689 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, A. M. et al. Metagenomic evaluation of colorectal most cancers datasets identifies cross-cohort microbial diagnostic signatures and a hyperlink with choline degradation. Nat. Med. 25, 667–678 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum — symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-Cadherin/β-catenin signaling by way of its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abed, J. et al. Fap2 mediates fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casasanta, M. A. et al. Fusobacterium nucleatum host cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal most cancers cell migration. Sci. Sign. 13, 1–13 (2020).


    Google Scholar
     

  • Geng, F., Zhang, Y., Lu, Z., Zhang, S. & Pan, Y. Fusobacterium nucleatum prompted DNA injury and promoted cell proliferation by the Ku70/p53 pathway in oral most cancers cells. DNA Cell Biol. 39, 144–151 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, P. et al. FadA promotes DNA injury and development of Fusobacterium nucleatum-induced colorectal most cancers by means of up-regulation of chk2. J. Exp. Clin. Most cancers Res. 39, 1–13 (2020).


    Google Scholar
     

  • Mima, Ok. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and affected person prognosis. Intestine 65, 1973–1980 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Serna, G. et al. Fusobacterium nucleatum persistence and danger of recurrence after preoperative therapy in regionally superior rectal most cancers. Ann. Oncol. 31, 1366–1375 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Salvucci, M. et al. Sufferers with mesenchymal tumours and excessive Fusobacteriales prevalence have worse prognosis in colorectal most cancers (CRC). Intestine 71, 1600–1612 (2022).

    PubMed 

    Google Scholar
     

  • Bullman, S. et al. Evaluation of Fusobacterium persistence and antibiotic response in colorectal most cancers. Science 358, 1443–1448 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Althoff, T. et al. Giant-scale bodily exercise knowledge reveal worldwide exercise inequality. Nature 547, 336–339 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, S. M. et al. Projecting most cancers incidence for 2025 within the 2 largest populated cities in Vietnam. Most cancers Management 26, 1–13 (2019).

    CAS 

    Google Scholar
     

  • Lin, H. & Peddada, S. D. Evaluation of compositions of microbiomes with bias correction. Nat. Commun. 11, 1–11 (2020).

    CAS 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, B. D., Witten, D. & Willis, A. D. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann. Appl. Stat. 14, 94–115 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, H., Huang, C., Zhao, H. & Deng, M. CCLasso: correlation inference for compositional knowledge by means of Lasso. Bioinformatics 31, 3172–3180 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurtz, Z. D. et al. Sparse and compositionally strong inference of microbial ecological networks. PLOS Comput. Biol. 11, e1004226 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brewer, M. L. et al. Fusobacterium spp. goal human CEACAM1 by way of the trimeric autotransporter adhesin CbpF. J. Oral Microbiol. 11, 1565043 (2019).

  • Wu, C. et al. Genetic and molecular determinants of polymicrobial interactions in Fusobacterium nucleatum. Proc. Natl Acad. Sci. USA 118, e2006482118 (2021).

  • Galaski, J. et al. Fusobacterium nucleatum CbpF mediates inhibition of T cell operate by means of CEACAM1 activation. Entrance. Cell. Infect. Microbiol. 11, 1–8 (2021).


    Google Scholar
     

  • Warren, R. L. et al. Co-occurrence of anaerobic micro organism in colorectal carcinomas. Microbiome 1, 1–12 (2013).


    Google Scholar
     

  • Drewes, J. L. et al. Excessive-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm standing reveal widespread colorectal most cancers consortia. npj Biofilms Microbiomes 3, 34 (2017).

  • Meng, Q. et al. Fusobacterium nucleatum secretes amyloid‐like FadA to boost pathogenicity. EMBO Rep. 22, 1–19 (2021).

    CAS 

    Google Scholar
     

  • Gao, Z., Guo, B., Gao, R., Zhu, Q. & Qin, H. Microbiota disbiosis is related to colorectal most cancers. Entrance. Microbiol. 6, 1–9 (2015).


    Google Scholar
     

  • Flemer, B. et al. The oral microbiota in colorectal most cancers is distinctive and predictive. Intestine 67, 1454–1463 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Xia, X. et al. Micro organism pathogens drive host colonic epithelial cell promoter hypermethylation of tumor suppressor genes in colorectal most cancers. Microbiome 8, 1–13 (2020).

    CAS 

    Google Scholar
     

  • Chung The, H. et al. Assessing intestine microbiota perturbations through the early part of infectious diarrhea in Vietnamese youngsters. Intestine Microbes 9, 38–54 (2018).


    Google Scholar
     

  • Liang, S. et al. Intestine microbiome related to APC gene mutation in sufferers with intestinal adenomatous polyps. Int. J. Biol. Sci. 16, 135–146 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, P. L. et al. Classification of modifications within the fecal microbiota related to colonic adenomatous polyps utilizing a long-read sequencing platform. Genes (Basel) 11, 1–14 (2020).


    Google Scholar
     

  • He, Y. et al. Non-nucleatum Fusobacterium species are dominant within the Southern Chinese language inhabitants with distinctive correlations to host illnesses in contrast with F. nucleatum. Intestine 70, 810–812 (2021).

    PubMed 

    Google Scholar
     

  • Yeoh, Y. Ok. et al. Southern Chinese language populations harbour non-nucleatum Fusobacteria possessing homologues of the colorectal cancer-associated FadA virulence issue. Intestine 69, 1998–2007 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lagier, J. C. et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, M. et al. Evaluation of 16S rRNA genes reveals lowered Fusobacterial neighborhood variety when translocating from saliva to GI websites. Intestine Microbes 12, 1–13 (2020).

    PubMed 

    Google Scholar
     

  • Abed, J. et al. Colon cancer-associated Fusobacterium nucleatum might originate from the oral cavity and attain colon tumors by way of the circulatory system. Entrance. Cell. Infect. Microbiol. 10, 1–12 (2020).


    Google Scholar
     

  • Komiya, Y. et al. Sufferers with colorectal most cancers have an identical strains of Fusobacterium nucleatum of their colorectal most cancers and oral cavity. Intestine 68, 1335–1337 (2019).

    PubMed 

    Google Scholar
     

  • Chung The, H. et al. Exploring the genomic variety and antimicrobial susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese inhabitants. Microbiol. Spectr. 9, e0052621 (2021).

    PubMed 

    Google Scholar
     

  • Ailloud, F. et al. Inside-host evolution of Helicobacter pylori formed by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun. 10, 2273 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Queen, J. et al. Comparative evaluation of colon cancer-derived fusobacterium nucleatum subspecies: irritation and colon tumorigenesis in murine fashions. MBio 13, e0299121 (2022).

  • Slade, D. J. New roles for Fusobacterium nucleatum in most cancers: goal the micro organism, host, or each? Developments Most cancers 7, 185–187 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Mima, Ok. et al. Fusobacterium nucleatum in colorectal carcinoma tissue in response to tumor location. Clin. Transl. Gastroenterol. 7, e200 (2016).

  • American Joint Committee on Most cancers. Chapter 20 – colon and rectum. In: AJCC Most cancers Staging Guide eighth version (Springer, 2017).

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. Ok. & Schloss, P. D. Improvement of a dual-index sequencing technique and curation pipeline for analyzing amplicon sequence knowledge on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gohl, D. et al. An optimized protocol for high-throughput amplicon-based microbiome profiling. Protoc. Exch. 1–28 https://doi.org/10.1038/protex.2016.030 (2016).

  • R Core Group. R: a language and atmosphere for statistical computing (R Core Group, 2016).

  • McMurdie, P. J. & Holmes, S. phyloseq: an R bundle for reproducible interactive evaluation and graphics of microbiome census knowledge. PLoS One 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic rework enhances evaluation of compositional microbiota knowledge. Elife 6, 1–20 (2017).


    Google Scholar
     

  • Oksanen, J. et al. vegan: Neighborhood ecology bundle. R bundle model 2. 3-5. (2016).

  • Callahan, B. J., Sankaran, Ok., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome knowledge evaluation: from uncooked reads to neighborhood analyses. F1000Research 5, 1492 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Precise sequence variants ought to exchange operational taxonomic items in marker-gene knowledge evaluation. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for fast project of rRNA sequences into the brand new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirarab, S. et al. PASTA: ultra-large a number of sequence alignment for nucleotide and amino-acid sequences. J. Comput. Biol. 22, 377–386 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a quick and efficient stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Washburne, A. D. et al. Strategies for phylogenetic evaluation of microbiome knowledge. Nat. Microbiol. 3, 652–661 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Tibshirani, R., Walther, G. & Hastie, T. Estimating the variety of clusters in a knowledge set by way of the hole statistic. J. R. Stat. Soc. 63, 411–423 (2001).


    Google Scholar
     

  • Ishwaran, H. & Kogalur, U. B. Random Forests for Survival, Regression and Classification (RF-SRC), R bundle model 2.2.0. (2016).

  • Calgaro, M., Romualdi, C., Waldron, L., Risso, D. & Vitulo, N. Evaluation of statistical strategies from single cell, bulk RNA-seq, and metagenomics utilized to microbiome knowledge. Genome Biol. 21, 1–31 (2020).


    Google Scholar
     

  • Nearing, J. T. et al. Microbiome differential abundance strategies produce totally different outcomes throughout 38 datasets. Nat. Commun. 13, 1–16 (2022).


    Google Scholar
     

  • Stevens, J. R., Herrick, J. S., Wolff, R. Ok. & Slattery, M. L. Energy in pairs: assessing the statistical worth of paired samples in checks for differential expression. BMC Genom. 19, 1–13 (2018).


    Google Scholar
     

  • Hirano, H. & Takemoto, Ok. Issue in inferring microbial neighborhood construction primarily based on co-occurrence community approaches. BMC Bioinforma. 20, 1–14 (2019).


    Google Scholar
     

  • Andrews, S. FastQC: A High quality Management Instrument for Excessive Throughput Sequence Knowledge [Online]. Out there on-line at: http://www.bioinformatics.babraham.ac.uk/tasks/fastqc/ (2010).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, Ok. E. Unicycler: resolving bacterial genome assemblies from brief and lengthy sequencing reads. PLoS Comput. Biol. 13, 1–22 (2017).


    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todd, S. M., Settlage, R. E., Lahmers, Ok. Ok. & Slade, D. J. Fusobacterium genomics utilizing MinION and illumina sequencing allows genome completion and correction. mSphere 3, 1–9 (2018).


    Google Scholar
     

  • Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, Ok. T. & Aluru, S. Excessive throughput ANI evaluation of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 1–8 (2018).


    Google Scholar
     

  • Ding, W., Baumdicker, F. & Neher, R. A. panX: pan-genome evaluation and exploration. Nucleic Acids Res. 46, 1–12 (2018).


    Google Scholar
     

  • Stamatakis, A. RAxML model 8: a instrument for phylogenetic evaluation and post-analysis of huge phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouy, M., Guindon, S. & Gascuel, O. SeaView model 4: a multiplatform graphical person interface for sequence alignment and phylogenetic tree constructing. Mol. Biol. Evol. 27, 221–224 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Carver, T. et al. Artemis and ACT: viewing, annotating and evaluating sequences saved in a relational database. Bioinformatics 24, 2672–2676 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Smith, D. Ok., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an r bundle for visualization and annotation of phylogenetic timber with their covariates and different related knowledge. Strategies Ecol. Evol. 8, 28–36 (2016).


    Google Scholar
     

  • Key, F. M. et al. On-person adaptive evolution of Staphylococcus aureus throughout atopic dermatitis will increase illness severity. Preprint at https://doi.org/10.1101/2021.03.24.436 (2021).

  • Assefa, S., Keane, T. M., Otto, T. D., Newbold, C. & Berriman, M. ABACAS: Algorithm-based computerized contiguation of assembled sequences. Bioinformatics 25, 1968–1969 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. The genome evaluation toolkit: a MapReduce framework for analyzing next-generation DNA sequencing knowledge. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://doi.org/10.48550/arXiv.1207.39 (2012).

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, 1–4 (2021).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments