Saturday, November 5, 2022
HomeMicrobiologyThe P. aeruginosa effector Tse5 types membrane pores disrupting the membrane potential...

The P. aeruginosa effector Tse5 types membrane pores disrupting the membrane potential of intoxicated micro organism


  • Sibley, C. D. et al. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis sufferers. Proc. Natl Acad. Sci. USA 105, 15070–15075 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, B. M., Jabra-Rizk, M. A., O’Might, G. A., William Costerton, J. & Shirtliff, M. E. Polymicrobial interactions: influence on pathogenesis and human illness. Clin. Microbiol. Rev. 25, 193–213 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bingle, L. E., Bailey, C. M. & Pallen, M. J. Sort VI secretion: a newbie’s information. Curr. Opin. Microbiol. 11, 3–8 (2008).

    PubMed 

    Google Scholar
     

  • Pukatzki, S., McAuley, S. B. & Miyata, S. T. The kind VI secretion system: translocation of effectors and effector-domains. Curr. Opin. Microbiol. 12, 11–17 (2009).

    PubMed 

    Google Scholar
     

  • Cianfanelli, F. R., Monlezun, L. & Coulthurst, S. J. Intention, load, hearth: the Sort VI secretion system, a bacterial nanoweapon. Developments Microbiol. 24, 51–62 (2016).

    PubMed 

    Google Scholar
     

  • Basler, M. Sort VI secretion system: secretion by a contractile nanomachine. Philos. Trans. R. Soc. B Biol. Sci. 370, 20150021 (2015).


    Google Scholar
     

  • Brunet, Y. R., Zoued, A., Boyer, F., Douzi, B. & Cascales, E. The Sort VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complicated through a number of contacts and serves as meeting platform for tail tube/sheath polymerization. PLoS Genet. 11, e1005545 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, E. et al. Biogenesis and construction of a sort VI secretion membrane core complicated. Nature 523, 555–560 (2015).

    PubMed 

    Google Scholar
     

  • Kudryashev, M. et al. Construction of the Sort VI secretion system contractile sheath. Cell 160, 952–962 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the kind VI secretion system spike. Nature 500, 350–353 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cianfanelli, F. R. et al. VgrG and PAAR proteins outline distinct variations of a useful kind VI secretion system. PLoS Pathog. 12, 1–27 (2016).


    Google Scholar
     

  • Nazarov, S. et al. Cryo‐EM reconstruction of Sort VI secretion system baseplate and sheath distal finish. EMBO J. 37, e97103 (2018).

    PubMed 

    Google Scholar
     

  • Wang, J. et al. Cryo-EM construction of the prolonged kind VI secretion system sheath–tube complicated. Nat. Microbiol. 2, 1507–1512 (2017).

    PubMed 

    Google Scholar
     

  • Whitney, J. C. et al. Genetically distinct pathways information effector export via the kind VI secretion system. Mol. Microbiol. 92, 529–542 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hachani, A. et al. Sort VI secretion system in Pseudomonas aeruginosa. J. Biol. Chem. 286, 12317–12327 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, A. T., McAuley, S., Pukatzki, S. & Mekalanos, J. J. Translocation of a Vibrio cholerae Sort VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5, 234–243 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suarez, G. et al. A Sort VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J. Bacteriol. 192, 155–168 (2010).

    PubMed 

    Google Scholar
     

  • Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Sort VI secretion system translocates a phage tail spike-like protein into goal cells the place it cross-links actin. Proc. Natl Acad. Sci. USA 104, 15508–15513 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, J. et al. The Hcp proteins fused with numerous extended-toxin domains characterize a novel sample of antibacterial effectors in kind VI secretion programs. Virulence 8, 1189–1202 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell, A. B. et al. A widespread bacterial Sort VI secretion effector superfamily recognized utilizing a heuristic method. Cell Host Microbe 11, 538–549 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filloux, A., Hachani, A. & Bleves, S. The bacterial kind VI secretion machine: yet one more participant for protein transport throughout membranes. Microbiology 154, 1570–1583 (2008).

    PubMed 

    Google Scholar
     

  • Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the bacterial kind VI secretion system by a genome huge in silico evaluation: what could be discovered from accessible microbial genomic assets? BMC Genom. 10, 104 (2009).


    Google Scholar
     

  • Hood, R. D. et al. A Sort VI secretion system of Pseudomonas aeruginosa targets a toxin to micro organism. Cell Host Microbe 7, 25–37 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell, A. B. et al. Sort VI secretion delivers bacteriolytic effectors to focus on cells. Nature 475, 343–347 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Structural Insights on the bacteriolytic and self-protection mechanism of Muramidase effector Tse3 in Pseudomonas aeruginosa. J. Biol. Chem. 288, 30607–30613 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, D. et al. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complicated from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol. Microbiol. 92, 1092–1112 (2014).

    PubMed 

    Google Scholar
     

  • LaCourse, Okay. D. et al. Conditional toxicity and synergy drive variety amongst antibacterial effectors. Nat. Microbiol. 3, 440–446 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitney, J. C. et al. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation issue Tu for supply to focus on cells. Cell 163, 607–619 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pissaridou, P. et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA harm to bacterial opponents. Proc. Natl Acad. Sci. USA 115, 12519–12524 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolan, L. M. et al. Identification of Tse8 as a Sort VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nat. Microbiol. 6, 1199–1210 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion equipment. Science 312, 1526–1530 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hood, R. D. et al. A Sort VI secretion system of Pseudomonas aeruginosa targets a toxin to micro organism. Cell Host Microbe 7, 25–37 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, F., Schwarz, S. & Mougous, J. D. TagR promotes PpkA-catalysed kind VI secretion activation in Pseudomonas aeruginosa. Mol. Microbiol. 72, 1111–1125 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ventre, I. et al. A number of sensors management reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl Acad. Sci. USA 103, 171–176 (2006).

    PubMed 

    Google Scholar
     

  • Basler, M. & Mekalanos, J. J. Sort 6 secretion dynamics inside and between bacterial cells. Science 337, 815 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basler, M. et al. Tit-for-Tat: Sort VI secretion system counterattack throughout bacterial cell–cell interactions. Cell 152, 884–894 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, B. T., Basler, M. & Mekalanos, J. J. Sort 6 secretion system-mediated immunity to Sort 4 secretion system-mediated gene switch. Science (80-.) 342, 250–253 (2013).


    Google Scholar
     

  • Le Roux, M. et al. Kin cell lysis is a hazard sign that prompts antibacterial pathways of Pseudomonas aeruginosa. Elife 2015, 1–65 (2015).


    Google Scholar
     

  • Ringel, P. D., Hu, D. & Basler, M. The position of kind VI secretion system effectors in goal cell lysis and subsequent horizontal gene switch. Cell Rep. 21, 3927–3940 (2017).

    PubMed 

    Google Scholar
     

  • Díaz Ríos, C. Caracterización del resistoma y viruloma de aislados de Pseudomonas aeruginosa de pacientes con fibrosis quística y bronquiectasias. Internacional, Tesis Doctoral, Universidad de Cantabria (2021).

  • Hachani, A., Allsopp, L. P., Oduko, Y. & Filloux, A. The VgrG proteins are ‘à la carte’ supply programs for bacterial kind VI effectors. J. Biol. Chem. 289, 17872–17884 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 net portal for protein modeling, prediction and evaluation. Nat. Protoc. 10, 845–858 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poole, S. J. et al. Identification of useful toxin/immunity genes linked to contact-dependent progress inhibition (CDI) and rearrangement hotspot (Rhs) programs. PLoS Genet. 7, e1002217 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M. & Aravind, L. Polymorphic toxin programs: complete characterization of trafficking modes, processing, mechanisms of motion, immunity and ecology utilizing comparative genomics. Biol. Direct 2012 71 7, 1–76 (2012).


    Google Scholar
     

  • Koskiniemi, S. et al. Rhs proteins from numerous micro organism mediate intercellular competitors. Proc. Natl Acad. Sci. USA 110, 7032–7037 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenren, L. M., Sullivan, N. L., Cardarelli, L., Septer, A. N. & Gibbs, Okay. A. Two unbiased pathways for self-recognition in Proteus mirabilis are linked by kind VI-dependent export. MBio 4, e00374–13 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, T. T. et al. Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a sort VI secretion system. Nat. Commun. 11, 1865 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, J. et al. PAAR‐Rhs proteins harbor varied C‐terminal toxins to diversify the antibacterial pathways of kind VI secretion programs. Environ. Microbiol. 19, 345–360 (2017).

    PubMed 

    Google Scholar
     

  • Ruhe, Z. C., Low, D. A. & Hayes, C. S. Polymorphic Toxins and Their Immunity Proteins: Variety, Evolution, and Mechanisms of Supply. Annu. Rev. Microbiol. 74, 497–520 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M. & Aravind, L. Polymorphic toxin programs: complete characterization of trafficking modes, processing, mechanisms of motion, immunity and ecology utilizing comparative genomics. Biol. Direct 7, 18 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busby, J. N., Panjikar, S., Landsberg, M. J., Hurst, M. R. H. & Lott, J. S. The BC element of ABC toxins is an RHS-repeat-containing protein encapsulation gadget. Nature 501, 547–550 (2013).

    PubMed 

    Google Scholar
     

  • Donato, S. L. et al. The β-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for kind VI secretion. Proc. Natl Acad. Sci. USA 117, 33540–33548 (2020).

    PubMed Central 

    Google Scholar
     

  • Martínez-García, E., Nikel, P. I., Aparicio, T. & de Lorenzo, V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Truth. 13, 159 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hachani, A., Allsopp, L. P., Oduko, Y. & Filloux, A. The VgrG proteins are “à la carte” supply programs for bacterial kind VI effectors. J. Biol. Chem. 289, 17872–17884 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, S., Bader, M. L., Drew, D. & de Gier, J.-W. Rationalizing membrane protein overexpression. Developments Biotechnol. 24, 364–371 (2006).

    PubMed 

    Google Scholar
     

  • Sockolosky, J. T. & Szoka, F. C. Periplasmic manufacturing through the pET expression system of soluble, bioactive human progress hormone. Protein Expr. Purif. 87, 129–135 (2013).

    PubMed 

    Google Scholar
     

  • te Winkel, J. D., Grey, D. A., Seistrup, Okay. H., Hamoen, L. W. & Strahl, H. Evaluation of antimicrobial-triggered membrane depolarization utilizing voltage delicate dyes. Entrance. Cell Dev. Biol. 0, 29 (2016).


    Google Scholar
     

  • Maget-Dana, R. The monolayer approach: a potent instrument for finding out the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta – Biomembr. 1462, 109–140 (1999).


    Google Scholar
     

  • Demel, R. A., Geurts van Kessel, W. S. M., Zwaal, R. F. A., Roelofsen, B. & van Deenen, L. L. M. Relation between varied phospholipase actions on human pink cell membranes and the interfacial phospholipid strain in monolayers. BBA – Biomembr. 406, 97–107 (1975).


    Google Scholar
     

  • Calvez, P., Bussières, S., Éric, D. & Salesse, C. Parameters modulating the utmost insertion strain of proteins and peptides in lipid monolayers. Biochimie 91, 718–733 (2009).

    PubMed 

    Google Scholar
     

  • Feng, S.-H., Zhang, W.-X., Yang, J., Yang, Y. & Shen, H.-B. Topology prediction enchancment of α-helical transmembrane proteins via helix-tail modeling and multiscale deep studying fusion. J. Mol. Biol. 432, 1279–1296 (2020).

    PubMed 

    Google Scholar
     

  • Alexeyev, M. F. & Winkler, H. H. Membrane topology of the Rickettsia prowazekii ATP/ADP translocase revealed by novel twin pho-lac reporters. J. Mol. Biol. 285, 1503–1513 (1999).

    PubMed 

    Google Scholar
     

  • Karimova, G. & Ladant, D. Defining membrane protein topology utilizing pho-lac reporter fusions. In Bacterial Protein Secretion Methods Vol. 1615 (eds Journet, L. & Cascales, E.) 129–142 (Humana Press, 2017).

  • Manoil, C. Chapter 3 Evaluation of membrane protein topology utilizing alkaline phosphatase and β-galactosidase gene fusions. Strategies Cell Biol. 34, 61–75 (1991).

    PubMed 

    Google Scholar
     

  • Lei, S. P., Lin, H., Wang, S., Callaway, J. & Wilcox, G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383 (1987).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steiner, D., Forrer, P., Stumpp, M. T. & Plückthun, A. Sign sequences directing cotranslational translocation broaden the vary of proteins amenable to phage show. Nat. Biotechnol. 24, 823–831 (2006).

    PubMed 

    Google Scholar
     

  • Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P. & Wickner, W. The binding cascade of SecB to SecA to SecY E mediates preprotein concentrating on to the E. coli plasma membrane. Cell 63, 269–279 (1990).

    PubMed 

    Google Scholar
     

  • Hoffschulte, H. Okay., Drees, B. & Müller, M. Identification of a soluble SecA/SecB complicated by the use of a subfractionated cell-free export system. J. Biol. Chem. 269, 12833–12839 (1994).

    PubMed 

    Google Scholar
     

  • Foster, J. W. Escherichia coli acid resistance: tales of an beginner acidophile. Nat. Rev. Microbiol. 2, 898–907 (2004).

    PubMed 

    Google Scholar
     

  • Miller, S. I. & Salama, N. R. The Gram-negative bacterial periplasm: Measurement issues. PLoS Biol. 16, e2004935 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeFelice, L. J. Introduction to Membrane Noise (Springer US, 1981).

  • Largo, E., Queralt-Martín, M., Carravilla, P., Nieva, J. L. & Alcaraz, A. Single-molecule conformational dynamics of viroporin ion channels regulated by lipid-protein interactions. Bioelectrochemistry 137, 107641 (2021).

    PubMed 

    Google Scholar
     

  • Bezrukov, S. M. & Winterhalter, M. Analyzing noise sources on the single-molecule stage: 1/f noise of an open maltoporin channel. Phys. Rev. Lett. 85, 202–205 (2000).

    PubMed 

    Google Scholar
     

  • Hoogerheide, D. P., Garaj, S. & Golovchenko, J. A. Probing floor cost fluctuations with solid-state nanopores. Phys. Rev. Lett. 102, 256804 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • De, S. & Basu, R. Affirmation of membrane electroporation from flicker noise. Phys. Rev. B—Condens. Matter 61, 6689–6691 (2000).


    Google Scholar
     

  • Alcaraz, A. et al. Diffusion, exclusion, and particular binding in a big channel: a research of OmpF selectivity inversion. Biophys. J. 96, 56–66 (2009).

    PubMed 

    Google Scholar
     

  • Ovchinnikov, Y. A. Ion channels of excitable membranes. In Science and Scientists third edn, 235–241 (Sinauer Associates Inc, 1981).

  • Hodgkin, A. L. & Katz, B. The impact of sodium ions on {the electrical} exercise of the large axon of the squid. J. Physiol. 108, 37–77 (1949).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gazit, E., Boman, A., Boman, H. G. & Shai, Y. Interplay of the mammalian antibacterial peptide cecropin PI with phospholipid vesicles. Biochemistry 34, 11479–11488 (1995).

    PubMed 

    Google Scholar
     

  • Verdiá-Báguena, C. et al. Coronavirus E protein types ion channels with functionally and structurally-involved membrane lipids. Virology 432, 485–494 (2012).

    PubMed 

    Google Scholar
     

  • Queralt-Martín, M., López, M. L., Aguilella-Arzo, M., Aguilella, V. M. & Alcaraz, A. Scaling conduct of ionic transport in membrane nanochannels. Nano Lett. 18, 6604–6610 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woolley, G. A. Channel-forming exercise of alamethicin: results of covalent tethering. Chem. Biodivers. 4, 1323–1337 (2007).

    PubMed 

    Google Scholar
     

  • Malev, V. V. et al. Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys. J. 82, 1985–1994 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawlak, M., Stankowski, S. & Schwarz, G. Melittin induced voltage-dependent conductance in DOPC lipid bilayers. BBA – Biomembr. 1062, 94–102 (1991).


    Google Scholar
     

  • Ujwal, R. et al. The crystal construction of mouse VDAC1 at 2.3 Å decision reveals mechanistic insights into metabolite gating. Proc. Natl Acad. Sci. USA 105, 17742–17747 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Queralt-Martín, M. et al. Assessing the position of residue E73 and lipid headgroup cost in VDAC1 voltage gating. Biochim. Biophys. Acta—Bioenerg. 1860, 22–29 (2019).

    PubMed 

    Google Scholar
     

  • López, M. L., Queralt-Martín, M. & Alcaraz, A. Stochastic pumping of ions based mostly on coloured noise in bacterial channels beneath acidic stress. Nanoscale 8, 13422–13428 (2016).

    PubMed 

    Google Scholar
     

  • Mehnert, T. et al. Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism. Proteins Struct. Funct. Genet. 70, 1488–1497 (2008).

    PubMed 

    Google Scholar
     

  • Gilbert, R. J. C., Serra, M. D., Froelich, C. J., Wallace, M. I. & Anderluh, G. Membrane pore formation at protein-lipid interfaces. Developments Biochem. Sci. 39, 510–516 (2014).

    PubMed 

    Google Scholar
     

  • Peraro, M. D. & Van Der Goot, F. G. Pore-forming toxins: historic, however by no means actually out of vogue. Nat. Rev. Microbiol. 14, 77–92 (2016).


    Google Scholar
     

  • Benarroch, J. M. & Asally, M. The microbiologist’s information to membrane potential dynamics. Developments Microbiol. 28, 304–314 (2020).

    PubMed 

    Google Scholar
     

  • Baty, D. et al. Web site-directed mutagenesis of the COOH-terminal area of colicin A: impact on secretion and voltage-dependent channel exercise. Proc. Natl Acad. Sci. USA 84, 1152–1156 (1987).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schramm, E., Mende, J., Braun, V. & Kamp, R. M. Nucleotide sequence of the colicin B exercise gene cba: consensus pentapeptide amongst TonB-dependent colicins and receptors. J. Bacteriol. 169, 3350–3357 (1987).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamada, M., Ebina, Y., Miyata, T., Nakazawa, T. & Nakazawa, A. Nucleotide sequence of the structural gene for colicin E1 and predicted construction of the protein. Proc. Natl Acad. Sci. USA 79, 2827–2831 (1982).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mankovich, J. A., Hsu, C. H. & Konisky, J. DNA and amino acid sequence evaluation of structural and immunity genes of colicins Ia and Ib. J. Bacteriol. 168, 228–236 (1986).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vetter, I. R. et al. Crystal construction of a colicin N fragment suggests a mannequin for toxicity. Construction 6, 863–874 (1998).

    PubMed 

    Google Scholar
     

  • Mariano, G. et al. A household of Sort VI secretion system effector proteins that type ion-selective pores. Nat. Commun. 10, 5484 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyata, S. T., Kitaoka, M., Brooks, T. M., McAuley, S. B. & Pukatzki, S. Vibrio cholerae requires the Sort VI secretion system virulence issue VasX to kill Dictyostelium discoideum. Infect. Immun. 79, 2941–2949 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiener, M., Freymann, D., Ghosh, P. & Stroud, R. M. Crystal construction of colicin Ia. Nature 385, 461–464 (1997).

    PubMed 

    Google Scholar
     

  • Hilsenbeck, J. L. et al. Crystal construction of the cytotoxic bacterial protein colicin B at 2.5 Å decision. Mol. Microbiol. 51, 711–720 (2004).

    PubMed 

    Google Scholar
     

  • Elkins, P., Bunker, A., Cramer, W. A. & Stauffacher, C. V. A mechanism for toxin insertion into membranes is usually recommended by the crystal construction of the channel-forming area of colicin E1. Construction 5, 443–458 (1997).

    PubMed 

    Google Scholar
     

  • Parker, M. W., Pattus, F., Tucker, A. D. & Tsernoglou, D. Construction of the membrane-pore-forming fragment of colicin A. Nature 337, 93–96 (1989).

    PubMed 

    Google Scholar
     

  • Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyata, S. T., Unterweger, D., Rudko, S. P. & Pukatzki, S. Twin expression profile of kind VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog. 9, e1003752 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlegel, S. et al. Optimizing membrane protein overexpression within the Escherichia coli pressure Lemo21(DE3). J. Mol. Biol. 423, 648–659 (2012).

    PubMed 

    Google Scholar
     

  • Wingfield, P. T. Protein precipitation utilizing ammonium sulfate. Curr. Protoc. Protein Sci. 2016, A.3F.1–A.3F.9 (2016).


    Google Scholar
     

  • Montal, M. & Mueller, P. Formation of bimolecular membranes from lipid monolayers and a research of their electrical properties. Proc. Natl Acad. Sci. USA 69, 3561–3566 (1972).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morein, S., Andersson, A. S., Rilfors, L. & Lindblom, G. Wild-type Escherichia coli cells regulate the membrane lipid composition in a ‘window’ between gel and non-lamellar constructions. J. Biol. Chem. 271, 6801–6809 (1996).

    PubMed 

    Google Scholar
     

  • Tasserit, C., Koutsioubas, A., Lairez, D., Zalczer, G. & Clochard, M. C. Pink noise of ionic conductance via single synthetic nanopores revisited. Phys. Rev. Lett. 105, 260602 (2010).

    PubMed 

    Google Scholar
     

  • Rigo, E. et al. Measurements of the dimensions and correlations between ions utilizing an electrolytic level contact. Nat. Commun. 10, 1–13 (2019).


    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments