Wednesday, September 7, 2022
HomeMicrobiologyThe affect of protozoa addition on the survivability of Bacillus inoculants and...

The affect of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics


  • Ray DK, Mueller ND, West PC, Foley JA. Yield traits are inadequate to double world crop manufacturing by 2050. PLoS ONE. 2013;8:1–8.


    Google Scholar
     

  • United Nations Division of Financial and Social Affairs. World inhabitants prospects: the 2017 revision. 2017. https://www.un.org/growth/desa/publications/world-population-prospects-the-2017-revision.html.

  • Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG, et al. EU agricultural reform fails on biodiversity. Science. 2014;344:1090–2.

    PubMed 
    Article 

    Google Scholar
     

  • Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML. Microbial inoculants: silver bullet or microbial Jurassic Park? Tendencies Microbiol. 2020;29:299–308.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Saad M, Eida A, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for profitable utility. J Exp Bot. 2020;71:3878–901.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu X, le Roux X, Salles JF. The legacy of microbial inoculants in agroecosystems and potential for tackling local weather change challenges. iScience. 2022;25:103821.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bounaffaa M, Florio A, le Roux X, Jayet PA. Financial and environmental evaluation of maize inoculation by plant progress selling rhizobacteria within the French Rhône-Alpes area. Ecol Econ. 2018;146:334–46.

    Article 

    Google Scholar
     

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant expertise: formulations and sensible views (1998-2013). Plant Soil. 2014;378:1–33.

    CAS 
    Article 

    Google Scholar
     

  • Mallon C, van Elsas J, Salles J. Microbial invasions: the method, patterns, and mechanisms. Tendencies Microbiol. 2015;23:719–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mawarda PC, le Roux X, van Elsas JD, Salles JF. Deliberate introduction of invisible invaders: a important appraisal of the affect of microbial inoculants on soil microbial communities. Soil Biol Biochem.2020;148:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Mallon C, Poly F, le Roux X, Marring I, van Elsas J, Salles J. Useful resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology. 2015;96:915–26.

    PubMed 
    Article 

    Google Scholar
     

  • Xing J, Jia X, Wang H, Ma B, Salles JF, Xu J. The legacy of bacterial invasions on soil native communities. Environ Microbiol. 2020;23:1–13.


    Google Scholar
     

  • Eisenhauer N, Schulz W, Scheu S, Jousset A. Area of interest dimensionality hyperlinks biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27:282–8.

    Article 

    Google Scholar
     

  • Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology analysis. FEMS Microbiol Rev. 2018;43:293–323.

    Article 
    CAS 

    Google Scholar
     

  • Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Tendencies Plant Sci. 2019;24:165–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sherr BF, Sherr EB, Berman T. Grazing, progress, and ammonium excretion charges of a heterotrophic microflagellate fed with 4 species of micro organism. Appl Environ Microbiol. 1983;45:1196–201.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. Protozoa improve foraging effectivity of arbuscular mycorrhizal fungi for mineral nitrogen from natural matter in soil to the good thing about host crops. New Phytol. 2013;199:203–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Geisen S, Koller R, Hünninghaus M, Dumack Okay, Urich T, Bonkowski M. The soil meals net revisited: numerous and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–18.

    CAS 
    Article 

    Google Scholar
     

  • Lengthy JJ, Jahn CE, Sánchez-Hidalgo A, Wheat W, Jackson M, Gonzalez-Juarrero M, et al. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola. PLoS ONE. 2018;13:e0202941.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Iavicoli A, Boutet E, Buchala A, Métraux JP. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Work together. 2003;16:851–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C. Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated pseudomonas fluorescens. Appl Environ Microbiol. 2010;76:5263–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D. Vampires within the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 2013;7:2387–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jousset A, Scheu S, Bonkowski M. Secondary metabolite manufacturing facilitates institution of rhizobacteria by decreasing each protozoan predation and the aggressive results of indigenous micro organism. Funct Ecol. 2008;22:714–9.

    Article 

    Google Scholar
     

  • Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites assist biocontrol pressure Pseudomonas fluorescens CHA0 to flee protozoan grazing. Appl Environ Microbiol. 2006;72:7083–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mallon CA, le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The affect of failure: unsuccessful bacterial invasions steer the soil microbial group away from the invader’s area of interest. ISME J. 2018;12:728–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mawarda PC, Lakke SL, Dirk van Elsas J, Salles JF. Temporal dynamics of the soil bacterial group following Bacillus invasion. iScience. 2022;25:1–17.

    Article 

    Google Scholar
     

  • Yi Y, de Jong A, Spoelder J, Theo J, van Elsas JD, Kuipers OP. Draft genome sequence of Bacillus mycoides M2E15, a pressure remoted from the endosphere of potato. Genome Announc. 2016;4:e00031.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loznik B, Oosterkamp PJ. Fertilizer comprising protozoa and micro organism. World Intelectual Property Group; 2017. https://patentscope.wipo.int/search/en/element.jsf?docId=WO2017105238.

  • Guo S, Xiong W, Grasp X, Gao Z, Jiao Z, Liu H, et al. Protists as primary indicators and determinants of plant efficiency. Microbiome. 2021;9:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, organic management agent. Physiol Mol Plant Pathol. 2002;61:289–98.

    CAS 
    Article 

    Google Scholar
     

  • Neher OT, Johnston MR, Zidack NK, Jacobsen BJ. Analysis of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the management of anthracnose of cucurbits brought on by Glomerella cingulata var. orbiculare. Biol Management. 2009;48:140–6.

    Article 

    Google Scholar
     

  • Gao Z. Soil protists: from traits to ecological capabilities. College of Utrecht; 2020. https://dspace.library.uu.nl/deal with/1874/400054.

  • Amacker N, Gao Z, Hu J, Jousset ALC, Kowalchuk GA, Geisen S. Protist feeding patterns and progress fee are associated to their predatory impacts on soil bacterial communities. FEMS Microbiol Ecol. 2022;98:1–11.

    Article 

    Google Scholar
     

  • Wright DA, Killham Okay, Glover LA, Prosser JI. Position of pore measurement location in figuring out bacterial exercise throughout predation by protozoa in soil. Appl Environ Microbiol. 1995;61:3537–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wright D, Killham Okay, Glover L, Biota JP-SS. The impact of location in soil on protozoal grazing of a genetically modified bacterial inoculum. In: Brussaard L, Kooistra MJ, editors. Soil construction/soil biota interrelationships. Amsterdam: Elsevier; 1993.p.633–40.

    Chapter 

    Google Scholar
     

  • Thewes S, Soldati T, Eichinger L. Editorial: amoebae as host fashions to review the interplay with pathogens. Entrance Cell Infect Microbiol. 2019;9:47.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kuppardt A, Fester T, Härtig C, Chatzinotas A. Rhizosphere protists change metabolite profiles in Zea mays. Entrance Microbiol. 2018;9:857.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic enchancment of amplicon marker gene strategies for elevated accuracy in microbiome research. Nat Biotechnol. 2016;34:942–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution pattern inference from Illumina amplicon knowledge. Nat Strategies. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Katoh Okay, Standley DM. MAFFT a number of sequence alignment software program model 7: enhancements in efficiency and value. Mol Biol Evol. 2013;30:772–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Worth MN, Dehal PS, Arkin AP. FastTree 2—roughly maximum-likelihood bushes for big alignments. PLoS ONE. 2010;5:e9490.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for fast task of rRNA sequences into the brand new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database mission: improved knowledge processing and web-based instruments. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lozupone C, Knight R. UniFrac: a brand new phylogenetic methodology for evaluating microbial communities. Appl Environ Microbiol. 2005;71:8228–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ritz Okay. The plate debate: cultivable communities don’t have any utility in modern environmental microbial ecology. FEMS Microbiol Ecol. 2007;60:358–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amacker N, Gao Z, Agaras BC, Latz E, Kowalchuk GA, Valverde CF, et al. Biocontrol traits correlate with resistance to predation by protists in soil pseudomonads. Entrance Microbiol. 2020;11:3164.

    Article 

    Google Scholar
     

  • Glücksman E, Bell T, Griffiths RI, Bass D. Carefully associated protist strains have completely different grazing impacts on pure bacterial communities. Environ Microbiol. 2010;12:3105–13.

    PubMed 
    Article 

    Google Scholar
     

  • Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness will increase the impact of prey range on prey yield. Nat Commun. 2012;3:1–7.

    Article 
    CAS 

    Google Scholar
     

  • Hünninghaus M, Koller R, Kramer S, Marhan S, Kandeler E, Bonkowski M. Modifications in bacterial group composition and soil respiration point out fast successions of protist grazers throughout mineralization of maize crop residues. Pedobiologia. 2017;62:1–8.

    Article 

    Google Scholar
     

  • van Elsas J, Chiurazzi M, Mallon C, Elhottova D, KriÅ¡tůfek V, Salles J. Microbial range determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Horňák Okay, Corno G. Each coin has a again facet: invasion by limnohabitans planktonicus promotes the upkeep of species range in bacterial communities. PLoS ONE. 2012;7:e51576.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gómez P, Paterson S, de Meester L, Liu X, Lenzi L, Sharma MD, et al. Native adaptation of a bacterium is as essential as its presence in structuring a pure microbial group. Nat Commun. 2016;7:1–8.


    Google Scholar
     

  • Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19:726–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiong W, Li R, Guo S, Karlsson I, Jiao Z, Xun W, et al. Microbial amendments alter protist communities inside the soil microbiome. Soil Biol Biochem. 2019;135:379–82.

    CAS 
    Article 

    Google Scholar
     

  • Schneider FD, Scheu S, Brose U. Physique mass constraints on feeding charges decide the results of predator loss. Ecol Lett. 2012;15:436–43.

    PubMed 
    Article 

    Google Scholar
     

  • Brose U, Archambault P, Barnes AD, Bersier L-F, Boy T, Canning-Clode J, et al. Predator traits decide food-web structure throughout ecosystems. Nat Ecol Evol. 2019;3:919–27.

    PubMed 
    Article 

    Google Scholar
     

  • van Elsas JD, Trevors JT, Jansson JK, Nannipieri P, editors. Trendy soil microbiology. third ed. Boca Raton: CRC Press; 2019.

  • Berga M, Székely AJ, Langenheder S. Results of disturbance depth and frequency on bacterial group composition and performance. PLoS ONE. 2012;7:e365969.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Chen Z, Kowalchuk GA, Xu Z, Fu X, Kuramae EE. Succession of the resident soil microbial group in response to periodic inoculations. Appl Environ Microbiol. 2021;87:e00046.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments