Saturday, October 29, 2022
HomeNeuroscienceSustained supply of chABC improves useful restoration after a backbone damage |...

Sustained supply of chABC improves useful restoration after a backbone damage | BMC Neuroscience


  • Ko H. Revisit spinal shock: sample of reflex evolution throughout spinal shock. Korean J Neurotrauma. 2018;14:47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Legislation JX. Remedy of spinal twine damage with mesenchymal stem cells. Cell Biosci. 2020;10:112.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal twine damage: an outline of pathophysiology, fashions and acute damage mechanisms. Entrance Neurol. 2019;10:282.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeinali A, Mellat A, Rahimdel A, Alahsab A. A examine on demographic sample, causes and stage of lesion within the spinal twine injured sufferers in Yazd Metropolis in 2009–2015. Int J Med Res Well being Sci. 2016;5:447–51.


    Google Scholar
     

  • Yousefifard M, Ramezani F, Vaccaro AR, Hosseini M, Rahimi-Movaghar V. The position of intraspinal administration of self-assembled peptide on locomotion restoration after spinal twine damage: a scientific evaluate and meta-analysis examine. Neuromodulation. 2022. https://doi.org/10.1016/j.neurom.2022.01.011.

    Article 
    PubMed 

    Google Scholar
     

  • Kahuripour M, Behroozi Z, Rahimi B, Hamblin MR, Ramezani F. The potential of curcumin for treating spinal twine damage: a meta-analysis examine. Nutr Neurosci. 2022. https://doi.org/10.1080/1028415X.2022.2070703.

    Article 
    PubMed 

    Google Scholar
     

  • Behroozi Z, Rahimi B, Hamblin MR, Nasirinezhad F, Janzadeh A, Ramezani F. Injection of cerium oxide nanoparticles to deal with spinal twine damage in rats. J Neuropathol Exp Neurol. 2021. https://doi.org/10.21203/rs.3.rs-547438/v1.

    Article 

    Google Scholar
     

  • Ramezani F, Neshasteh-Riz A, Ghadaksaz A, Fazeli SM, Janzadeh A, Hamblin MR. Mechanistic points of photobiomodulation remedy within the nervous system. Lasers Med Sci. 2021. https://doi.org/10.1007/s10103-021-03277-2.

    Article 
    PubMed 

    Google Scholar
     

  • Ramezani F, Razmgir M, Tanha Okay, Nasirinezhad F, Neshastehriz A, Bahrami-Ahmadi A, et al. Photobiomodulation for spinal twine damage: a scientific evaluate and meta-analysis. Physiol Behav. 2019;2020(224): 112977.


    Google Scholar
     

  • Yousefi S, Hojati V, Nasirinezhad F, Ramezani F, Janzadeh A, Vaezi G. The impact of 4 weeks of low-level laser radiation (660 nm) on motion restoration and fibroblasts invasion. Arch Neurosci. 2019. https://doi.org/10.5812/ans.87225.

    Article 

    Google Scholar
     

  • Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal twine damage. Physiol Rev. 2018;98:881–917.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradbury EJ, Burnside ER. Shifting past the glial scar for spinal twine restore. Nat Commun. 2019;10:3879.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, et al. Microenvironment imbalance of spinal twine damage. Cell Transplant. 2018;27:853–66.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohtake Y, Smith G, Li S. Reactive astrocyte scar and axon regeneration: suppressor or facilitator? Neural Regen Res. 2016;11:1050.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh S, Hui SP. Axonal regeneration in zebrafish spinal twine. Regeneration. 2018;5:43–60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selzer ME, Dobkin BH. Spinal twine damage: a information for sufferers and households (American Academy of Neurology Press
    High quality of Life Guides). AAN PRESS; 2008.

  • Zhou P, Guan J, Xu P, Zhao J, Zhang C, Zhang B, et al. Cell therapeutic methods for spinal twine damage. Adv Wound Care. 2019;8:585–605.


    Google Scholar
     

  • Orlandin JR, Ambrósio CE, Lara VM. Glial scar-modulation as therapeutic instrument in spinal twine damage in animal fashions. Acta Cir Bras. 2017;32:168–74.

    PubMed 

    Google Scholar
     

  • Gaudet AD, Fonken LK. Glial cells form pathology and restore after spinal twine damage. Neurotherapeutics. 2018;15:554–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones LL, Sajed D, Tuszynski MH. Axonal regeneration by areas of chondroitin sulfate proteoglycan deposition after spinal twine damage: a steadiness of permissiveness and inhibition. J Neurosci. 2003;23:9276–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siebert JR, Conta Steencken A, Osterhout DJ. Chondroitin sulfate proteoglycans within the nervous system: inhibitors to restore. Biomed Res Int. 2014;2014:1–15.


    Google Scholar
     

  • Wanner IB, Deik A, Torres M, Rosendahl A, Neary JT, Lemmon VP, et al. A brand new in vitro mannequin of the glial scar inhibits axon progress. Glia. 2008;56:1691–709.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng C-H, Lin C-T, Lee M, Tsai M, Huang W-H, Huang M-C, et al. Native supply of high-dose chondroitinase ABC within the sub-acute stage promotes axonal outgrowth and useful restoration after full spinal twine transection. PLoS ONE. 2015;10: e0138705.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yick L, Wu W, So Okay-F, Yip HK, Shum DK. Chondroitinase ABC promotes axonal regeneration of Clarkeʼs neurons after spinal twine damage. NeuroReport. 2000;11:1063–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Nagappan PG, Chen H, Wang D. Neuroregeneration and plasticity: a evaluate of the physiological mechanisms for reaching useful restoration postinjury. Mil Med Res. 2020;7:30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyck S, Kataria H, Alizadeh A, Santhosh KT, Lang B, Silver J, et al. Perturbing chondroitin sulfate proteoglycan signaling by LAR and PTPσ receptors promotes a helpful inflammatory response following spinal twine damage. J Neuroinflamm. 2018;15:90.


    Google Scholar
     

  • Matrix E, Damage TB. Extracellular matrix and traumatic mind damage. J Neurosci Res. 2018;96:573–88.


    Google Scholar
     

  • Hussein RK, Mencio CP, Katagiri Y, Brake AM, Geller HM. Function of chondroitin sulfation following spinal twine damage. Entrance Cell Neurosci. 2020;14:208.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laabs TL, Wang H, Katagiri Y, McCann T, Fawcett JW, Geller HM. Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory exercise of astrocyte-derived chondroitin sulfate proteoglycans. J Neurosci. 2007;27:14494–501.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pakulska MM, Tator CH, Shoichet MS. Native supply of chondroitinase ABC with or with out stromal cell-derived issue 1α promotes useful restore within the injured rat spinal twine. Biomaterials. 2017;134:13–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Warren PM, Andrews MR, Smith M, Bartus Okay, Bradbury EJ, Verhaagen J, et al. Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Sci Rep. 2020;10:11262.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearson CS, Mencio CP, Barber AC, Martin KR, Geller HM. Identification of a vital sulfation in chondroitin that inhibits axonal regeneration. Elife. 2018;7:1–21.


    Google Scholar
     

  • Raspa A, Bolla E, Cuscona C, Gelain F. Possible stabilization of chondroitinase abc permits diminished astrogliosis in a power mannequin of spinal twine damage. CNS Neurosci Ther. 2019;25:86–100.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang T, Dai Y, Chen G, Cui S. Dissecting the twin position of the glial scar and scar-forming astrocytes in spinal twine damage. Entrance Cell Neurosci. 2020;14:78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Y, Liu X, Chen Z. Glial scar—a promising goal for enhancing outcomes after CNS damage. J Mol Neurosci. 2020;70:340–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Xie C, Shen X, Xu X, Liu H, Li F, Lu S, et al. Astrocytic YAP promotes the formation of glia scars and neural regeneration after spinal twine damage. J Neurosci. 2020;40:2644–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sami A, Selzer ME, Li S. Advances within the signaling pathways downstream of glial-scar axon progress inhibitors. Entrance Cell Neurosci. 2020;14:174.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warren PM, Dickens SM, Gigout S, Fawcett JW, Kwok JCF. Regulation of CNS plasticity by the extracellular matrix. In: Chao MV, editor. The Oxford handbook of developmental neural plasticity. Oxford: Oxford College Press; 2018. p. 1–40.


    Google Scholar
     

  • Tom VJ, Kadakia R, Santi L, Houlé JD. Administration of chondroitinase ABC rostral or caudal to a spinal twine damage website promotes anatomical however not useful plasticity. J Neurotrauma. 2009;26:2323–33.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousefifard M, Chondroitinase ABC. Administration in locomotion restoration after spinal twine damage: a scientific evaluate and meta-analysis. Primary Clin Neurosci J. 2021. https://doi.org/10.1016/j.expneurol.2007.07.019.

    Article 

    Google Scholar
     

  • Lee H, McKeon RJ, Bellamkonda RV. Sustained supply of thermostabilized chABC enhances axonal sprouting and useful restoration after spinal twine damage. Proc Natl Acad Sci. 2010;107:3340–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Clemons TD, Fitzgerald M, Dunlop SA, Harvey AR, Iyer KS, Stubbs KA. An improved assay for the spectrophotometric dedication of chondroitinase ABC exercise. New J Chem. 2013;37:1944.

    CAS 

    Google Scholar
     

  • Pakulska M. Mixed supply of chondroitinase ABC (ChABC) and stromal cell derived issue 1α (SDF1α) for spinal twine regeneration (Doctoral dissertation). 2016.

  • Jahandideh A, Noori H, Rahimi B, Hamblin MR, Behroozi Z, Ramezani M, et al. Alginate scaffolds enhance useful restoration after spinal twine damage. Eur J Trauma Emerg Surg. 2021;48:1711–21.

    PubMed 

    Google Scholar
     

  • Fan M, Tan H. Biocompatible conjugation for biodegradable hydrogels as drug and cell scaffolds. Cogent Eng. 2020;7:1736407.


    Google Scholar
     

  • Wang X, Yang Y, Shi Y, Jia F. Editorial: Sensible hydrogels in tissue engineering and regenerative drugs. Entrance Chem. 2020;8.

  • Tune R, Murphy M, Li C, Ting Okay, Soo C, Zheng Z. Present growth of biodegradable polymeric supplies for biomedical purposes. Drug Des Dev Ther. 2018;12:3117–45.

    CAS 

    Google Scholar
     

  • Azizi M, Farahmandghavi F, Joghataei MT, Zandi M, Imani M, Bakhtiari M, et al. ChABC-loaded PLGA nanoparticles: a complete examine on biocompatibility, useful restoration, and axonal regeneration in animal mannequin of spinal twine damage. Int J Pharm. 2020;577: 119037.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y-C, Hsu S, Chen M, Hsieh C, Kuo W, Cheng H, et al. Managed launch of chondroitinase ABC in chitosan-based scaffolds and PDLLA microspheres. Carbohydr Polym. 2011;84:788–93.

    CAS 

    Google Scholar
     

  • Colello RJ, Chow WN, Bigbee JW, Lin C, Dalton D, Brown D, et al. The incorporation of progress issue and chondroitinase ABC into an electrospun scaffold to advertise axon regrowth following spinal twine damage. J Tissue Eng Regen Med. 2016;10:656–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Hassannejad Z, Vahedi F, Zadegan SA, Mokhatab M, Rezvan M, Saadat S, et al. Potential variables affecting the standard of animal research concerning pathophysiology of traumatic spinal twine accidents. Spinal Twine. 2015;54:579–83.

    PubMed 

    Google Scholar
     

  • Cholas R, Hsu H, Spector M.
    Collagen Scaffolds Incorporating Choose Therapeutic Brokers to Facilitate a
    Reparative Response in a Standardized Hemiresection Defect within the Rat Spinal
    Twine. Tissue Eng Half A. 2012;18:2158–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Führmann T, Anandakumaran PN, Payne SL, Pakulska MM, Varga BV, Nagy A, Tator C, Shoichet MS. Mixed supply of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue restore in an animal mannequin of spinal twine damage. Biomed Mater. 2018;13(2):024103. https://doi.org/10.1088/1748-605X/aa96dc.

  • Xia T, Huang B, Ni S, Gao L,
    Wang J, Wang J, et al. The mix of db-cAMP and ChABC with poly(propylene
    carbonate) microfibers promote axonal regenerative sprouting and useful
    restoration after spinal twine hemisection damage. Biomed Pharmacother.
    2017;86:354–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Gu Z, Qiu G, Tune Y. Mixture of chondroitinase ABC, glial cell line–derived neurotrophic issue and Nogo A antibody delayed-release microspheres promotes the useful restoration of spinal twine damage. J Craniofac Surg. 2013;24:2153–7.

    PubMed 

    Google Scholar
     

  • Pan Q, Guo Y, Kong F. Poly (glycerol sebacate) mixed with chondroitinase ABC promotes spinal twine restore in rats. 2017;1–8.

  • Ni S, Xia T, Li X, Zhu X, Qi H,
    Huang S, et al. Sustained supply of chondroitinase ABC by poly(propylene
    carbonate)-chitosan micron fibers promotes axon regeneration and useful
    restoration after spinal twine hemisection. Mind Res. 2015;1624:469–78.

    CAS 
    PubMed 

    Google Scholar
     

  • García-Alías G, Barkhuysen S, Buckle M, Fawcett JW. Chondroitinase ABC therapy opens a window of alternative for task-specific rehabilitation. Nat Neurosci. 2009;12:1145–51.

    PubMed 

    Google Scholar
     

  • Lin R, Kwok JCF, Crespo D, Fawcett JW. Chondroitinase ABC has a long-lasting impact on chondroitin sulphate glycosaminoglycan content material within the injured rat mind. J Neurochem. 2007;104(2):400–8.

    PubMed 

    Google Scholar
     

  • Tune YH, Agrawal NK, Griffin JM, Schmidt CE. Latest advances in nanotherapeutic methods for spinal twine damage restore. Adv Drug Deliv Rev. 2019;148:38–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Hanna A, et al. Peripheral nerve grafts and chondroitinase ABC software improves useful restoration after full spinal twine transection. J Neurol Res. 2013;3:85.


    Google Scholar
     

  • Bukhari N, Torres L, Robinson JK, Tsirka SE. Axonal regrowth after spinal twine damage through chondroitinase and the tissue plasminogen activator (tPA)/plasmin system. J Neurosci. 2011;31:14931–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tester NJ, Plaas AH, Howland DR. Impact of physique temperature on chondroitinase ABC’s skill to cleave chondroitin sulfate glycosaminoglycans. J Neurosci Res. 2007;85:1110–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Wang J, Shibata S, Chio J, Hettiaratchi MH, Fu T, et al. Human oligodendrogenic neural progenitor cells delivered with chondroitinase ABC facilitate useful restore of power spinal twine damage. Stem Cell Rep. 2018;11(6):1433–48.


    Google Scholar
     

  • Hyatt AJT, Wang D, Kwok JC, Fawcett JW, Martin KR. Managed launch of chondroitinase ABC from fi brin gel reduces the extent of inhibitory glycosaminoglycan chains in lesioned spinal twine. J Management Launch. 2010;147:24–9.

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments