Friday, September 16, 2022
HomeMicrobiologyStructural group and sequence range of the whole nucleotide sequence encoding the...

Structural group and sequence range of the whole nucleotide sequence encoding the Plasmodium malariae merozoite floor protein-1


  • Betson, M., Clifford, S., Stanton, M., Kabatereine, N. B. & Stothard, J. R. Emergence of nonfalciparum Plasmodium an infection regardless of common artemisinin mixture remedy in an 18-month longitudinal research of Ugandan youngsters and their moms. J. Infect. Dis. 217, 1099–1109 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Groger, M. et al. Potential medical and molecular analysis of potential Plasmodium ovale curtisi and wallikeri relapses in a high-transmission setting. Clin. Infect. Dis. 69, 2119–2126 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yman, V. et al. Persistent transmission of Plasmodium malariae and Plasmodium ovale species in an space of declining Plasmodium falciparum transmission in japanese Tanzania. PLoS Negl. Trop. Dis. 13, e0007414 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hawadak, J., Dongang Nana, R. R. & Singh, V. International development of Plasmodium malariae and Plasmodium ovale spp. malaria infections within the final 20 years (2000–2020): A scientific overview and meta-analysis. Parasit. Vectors 14, 297 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gilles, H. M. & Hendrickse, R. G. Nephrosis in Nigerian youngsters. Function of Plasmodium malariae, and impact of antimalarial therapy. Br. Med. J. 2, 27–31 (1963).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ward, P. A. & Kibukamusoke, J. W. Proof for soluble immune complexes within the pathogenesis of the glomerulonephritis of quartan malaria. Lancet 1, 283–285 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hendrickse, R. G. & Adeniyi, A. Quartan malarial nephrotic syndrome in youngsters. Kidney Int. 16, 64–74 (1979).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silva, G. B. D. J., Pinto, J. R., Barros, E. J. G., Farias, G. M. N. & Daher, E. F. Kidney involvement in malaria: An replace. Rev. Inst. Med. Trop. Sao Paulo 59, e53 (2017).


    Google Scholar
     

  • Maguire, J. D. et al. Chloroquine-resistant Plasmodium malariae in south Sumatra, Indonesia. Lancet 360, 58–60 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Collins, W. E. & Jeffery, G. M. Prolonged clearance time after therapy of infections with Plasmodium malariae might not be indicative of resistance to chloroquine. Am. J. Trop. Med. Hyg. 67, 406–410 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Collins, W. E. & Jeffery, G. M. Plasmodium malariae: Parasite and illness. Clin. Microbiol. Rev. 20, 579–592 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Verra, F. et al. A scientific overview of transfusion-transmitted malaria in non-endemic areas. Malar. J. 17, 36 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aschar, M. et al. The hidden Plasmodium malariae in blood donors: A danger coming from areas of low transmission of malaria. Rev. Inst. Med. Trop. Sao Paulo 62, e100 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Putaporntip, C., Buppan, P. & Jongwutiwes, S. Improved efficiency with saliva and urine as various DNA sources for malaria prognosis by mitochondrial DNA-based PCR assays. Clin. Microbiol. Infect. 17, 1484–1491 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Putaporntip, C. et al. Cryptic Plasmodium inui and P. fieldi infections amongst symptomatic malaria sufferers in Thailand. Clin. Infect. Dis. (In press) (2022).

  • Cunha, M. G. et al. Blended Plasmodium malariae infections have been underdetected in a malaria endemic space within the Amazon Area, Brazil. Am. J. Trop. Med. Hyg. 105, 1184–1186 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thimasarn, Ok., Jatapadma, S., Vijaykadga, S., Sirichaisinthop, J. & Wongsrichanalai, C. Epidemiology of malaria in Thailand. J. Journey Med. 2, 59–65 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Putaporntip, C. et al. Differential prevalence of Plasmodium infections and cryptic Plasmodium knowlesi malaria in people in Thailand. J. Infect. Dis. 199, 1143–1150 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jongwutiwes, S. et al. Plasmodium knowlesi malaria in people and macaques, Thailand. Emerg. Infect. Dis. 17, 1799–1806 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Putaporntip, C. et al. Plasmodium cynomolgi co-infections amongst symptomatic malaria sufferers, Thailand. Emerg. Infect. Dis. 27, 590–593 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Blackman, M. J. & Carruthers, V. B. Current insights into apicomplexan parasite egress present new views to a kill. Curr. Opin. Microbiol. 16, 459–464 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Das, S. et al. Processing of Plasmodium falciparum merozoite floor protein msp1 prompts a spectrin-binding perform enabling parasite egress from RBCs. Cell Host Microbe. 18, 433–444 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holder, A. A. The precursor to main merozoite floor antigens: Construction and position in immunity. Prog. Allergy 41, 72–97 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanabe, Ok., Mackay, M., Goman, M. & Scaife, J. G. Allelic dimorphism in a floor antigen gene of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 195, 273–287 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blackman, M. J., Heidrich, H. G., Donachie, S., McBride, J. S. & Holder, A. A. A single fragment of a malaria merozoite floor protein stays on the parasite throughout crimson cell invasion and is the goal of invasion-inhibiting antibodies. J. Exp. Med. 172, 379–382 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Egan, A. F. et al. Scientific immunity to Plasmodium falciparum malaria is related to serum antibodies to the 19-kDa C-terminal fragment of the merozoite floor antigen, PfMSP-1. J. Infect. Dis. 173, 765–769 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Conway, D. J. et al. A principal goal of human immunity to malaria recognized by molecular inhabitants genetic and immunological analyses. Nat. Med. 6, 689–692 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goel, V. Ok. et al. Band 3 is a bunch receptor binding merozoite floor protein 1 throughout the Plasmodium falciparum invasion of erythrocytes. Proc. Natl. Acad. Sci. USA 100, 5164–5169 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boyle, M. J., Richards, J. S., Gilson, P. R., Chai, W. & Beeson, J. G. Interactions with heparin-like molecules throughout erythrocyte invasion by Plasmodium falciparum merozoites. Blood 115, 4559–4568 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baldwin, M. R., Li, X., Hanada, T., Liu, S. C. & Chishti, A. H. Merozoite floor protein 1 recognition of host glycophorin A mediates malaria parasite invasion of crimson blood cells. Blood 125, 2704–2711 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dijkman, P. M. et al. Construction of the merozoite floor protein 1 from Plasmodium falciparum. Sci. Adv. 7, eabg0465 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Putaporntip, C. et al. Mosaic group and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite floor protein-1 locus. Proc. Natl. Acad. Sci. USA 99, 16348–16353 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Putaporntip, C., Thongaree, S. & Jongwutiwes, S. Differential sequence range at merozoite floor protein-1 locus of Plasmodium knowlesi from people and macaques in Thailand. Infect. Genet. Evol. 18, 213–219 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Putaporntip, C., Hughes, A. L. & Jongwutiwes, S. Low degree of sequence range at merozoite floor protein-1 locus of Plasmodium ovale curtisi and P. ovale wallikeri from Thai isolates. PLoS One 8, e58962 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fandeur, T., Volney, B., Peneau, C. & de Thoisy, B. Monkeys of the rainforest in French Guiana are pure reservoirs for P. brasilianum/P. malariae malaria. Parasitology 120(I), 11–21 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Birkenmeyer, L., Muerhoff, A. S., Dawson, G. J. & Desai, S. M. Isolation and characterization of the MSP1 genes from Plasmodium malariae and Plasmodium ovale. Am. J. Trop. Med. Hyg. 82, 996–1003 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Araújo, M. S. et al. Pure Plasmodium an infection in monkeys within the state of Rondônia (Brazilian Western Amazon). Malar. J. 12, 180 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guimarães, L. O. et al. Merozoite floor protein-1 genetic range in Plasmodium malariae and Plasmodium brasilianum from Brazil. BMC Infect. Dis. 15, 529 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li, P. et al. Plasmodium malariae and Plasmodium ovale infections within the China-Myanmar border space. Malar. J. 15, 557 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guimarães, L. O. et al. The genetic range of Plasmodium malariae and Plasmodium brasilianum from human, simian and mosquito hosts in Brazil. Acta Trop. 124, 27–32 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Lalremruata, A. et al. Pure an infection of Plasmodium brasilianum in people: Man and monkey share quartan malaria parasites within the Venezuelan Amazon. EBioMedicine 2, 1186–1192 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Andreatta, M. et al. An automatic benchmarking platform for MHC class II binding prediction strategies. Bioinformatics 34, 1522–1528 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paul, S., Grifoni, A., Peters, B. & Sette, A. Main histocompatibility advanced binding, eluted ligands, and immunogenicity: Benchmark testing and predictions. Entrance. Immunol. 10, 3151 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Satapornpong, P. et al. Genetic range of HLA class I and sophistication II alleles in Thai populations: Contribution to genotype-guided therapeutics. Entrance. Pharmacol. 11, 78 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jongwutiwes, S., Tanabe, Ok. & Kanbara, H. Sequence conservation within the C-terminal a part of the precursor to the main merozoite floor proteins (MSP1) of Plasmodium falciparum from area isolates. Mol. Biochem. Parasitol. 59, 95–100 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jongwutiwes, S., Putaporntip, C. & Hughes, A. L. Bottleneck results on vaccine-candidate antigen range of malaria parasites in Thailand. Vaccine 28, 3112–3117 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sawai, H. et al. Lineage-specific constructive choice on the merozoite floor protein 1 (msp1) locus of Plasmodium vivax and associated simian malaria parasites. BMC Evol. Biol. 10, 52 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tanabe, Ok. et al. Allelic dimorphism-associated restriction of recombination in Plasmodium falciparum msp1. Gene 397, 153–160 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tanabe, Ok. et al. Inside-population genetic range of Plasmodium falciparum vaccine candidate antigens reveals geographic distance from a Central sub-Saharan African origin. Vaccine 31, 1334–1339 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tanabe, Ok. et al. Plasmodium falciparum: Genetic range and complexity of infections in a remoted village in Western Thailand. Parasitol. Int. 64, 260–266 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Kimura, M. The Impartial Principle of Molecular Evolution (Cambridge College Press, 1983).

    Guide 

    Google Scholar
     

  • Hughes, A. L. Optimistic choice and interallelic recombination on the merozoite floor antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol. Biol. Evol. 9, 381–393 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, A. L. & Verra, F. Intensive polymorphism and historic origin of Plasmodium falciparum. Developments Parasitol. 18, 348–351 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Putaporntip, C., Jongwutiwes, S., Iwasaki, T., Kanbara, H. & Hughes, A. L. Historic frequent ancestry of the merozoite floor protein 1 of Plasmodium vivax as inferred from its homologue in Plasmodium knowlesi. Mol. Biochem. Parasitol. 146, 105–108 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Putaporntip, C. et al. Ecology of malaria parasites infecting Southeast Asian macaques: Proof from cytochrome b sequences. Mol. Ecol. 19, 3466–3476 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Withers-Martinez, C. et al. Plasmodium subtilisin-like protease 1 (SUB1): Insights into the active-site construction, specificity and performance of a pan-malaria drug goal. Int. J. Parasitol. 42, 597–612 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Little one, M. A., Epp, C., Bujard, H. & Blackman, M. J. Regulated maturation of malaria merozoite floor protein-1 is crucial for parasite development. Mol. Microbiol. 78, 187–202 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, S. et al. Processing of Plasmodium falciparum merozoite floor protein msp1 prompts a spectrin-binding perform enabling parasite egress from RBCs. Cell Host Microbe 18, 433–444 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sanders, P. R. et al. Identification of protein complexes in detergent-resistant membranes of Plasmodium falciparum schizonts. Mol. Biochem. Parasitol. 154, 148–157 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, C. S. et al. The merozoite floor protein 1 advanced is a platform for binding to human erythrocytes by Plasmodium falciparum. J. Biol. Chem. 289, 25655–25669 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tolle, R. et al. A potential research of the affiliation between the human humoral immune response to Plasmodium falciparum blood stage antigen gp190 and management of malarial infections. Infect. Immun. 61, 40–47 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Elizardez, Y. B. et al. Recombinant proteins of Plasmodium malariae merozoite floor protein 1 (PmMSP1): Testing immunogenicity within the BALB/c mannequin and potential use as diagnostic device. PLoS One 14, e0219629 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monteiro, E. F. et al. Naturally acquired humoral immunity in opposition to malaria parasites in non-human primates from the Brazilian Amazon, Cerrado and Atlantic Forest. Pathogens 9, 525 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monteiro, E. F. et al. Antibody profile comparability in opposition to MSP1 antigens of a number of Plasmodium species in human serum samples from two completely different Brazilian populations utilizing a multiplex serological assay. Pathogens 10, 1138 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Locher, C. P., Tam, L. Q., Chang, S. P., McBride, J. S. & Siddiqui, W. A. Plasmodium falciparum: gp195 tripeptide repeat-specific monoclonal antibody inhibits parasite development in vitro. Exp. Parasitol. 84, 74–83 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McBride, J. S., Walliker, D. & Morgan, G. Antigenic range within the human malaria parasite Plasmodium falciparum. Science 217, 254–257 (1982).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pascarella, S. & Argos, P. Evaluation of insertions/deletions in protein constructions. J. Mol. Biol. 224, 461–471 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Montgomery, S. B. et al. The origin, evolution, and practical affect of brief insertion-deletion variants recognized in 179 human genomes. Genome Res. 23, 749–761 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Streisinger, G. et al. Frameshift mutations and the genetic code. Chilly Spring Harb. Symp. Quant. Biol. 31, 77–84 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Levinson, G. & Gutman, G. A. Slipped-strand mispairing: A significant mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203–221 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Chu, G. Double strand break restore. J. Biol. Chem. 272, 24097–24100 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McVey, M., Larocque, J. R., Adams, M. D. & Sekelsky, J. J. Formation of deletions throughout double-strand break restore in Drosophila DmBlm mutants happens after strand invasion. Proc. Natl. Acad. Sci. USA 101, 15694–15699 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee, J. A., Carvalho, C. M. & Lupski, J. R. A DNA replication mechanism for producing nonrecurrent rearrangements related to genomic problems. Cell 131, 1235–1247 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication mannequin for the origin of human copy quantity variation. PLoS Genet. 5, e1000327 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jongwutiwes, S., Tanabe, Ok., Hughes, M. Ok., Kanbara, H. & Hughes, A. L. Allelic variation within the circumsporozoite protein of Plasmodium falciparum from Thai area isolates. Am. J. Trop. Med. Hyg. 51, 659–668 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seethamchai, S. et al. Variation in intronic microsatellites and exon 2 of the Plasmodium falciparum chloroquine resistance transporter gene throughout modification of artemisinin mixture remedy in Thailand. Infect. Genet. Evol. 65, 35–42 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: A number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Benson, G. Tandem repeats finder: A program to research DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nei, M. Molecular Evolutionary Genetics (Columbia College Press, 1987).

    Guide 

    Google Scholar
     

  • Librado, P. & Rozas, J. DnaSP v5: A software program for complete evaluation of DNA polymorphism knowledge. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. In Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Educational Press, 1969).

    Chapter 

    Google Scholar
     

  • Tamura, Ok., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics evaluation model 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Murrell, B. et al. FUBAR: A quick, unconstrained Bayesian AppRoximation for inferring choice. Mol. Biol. Evol. 30, 1196–1205 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weaver, S. et al. Datamonkey 2.0: A contemporary net utility for characterizing selective and different evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kosakovsky Pond, S. L. & Frost, S. D. W. Datamonkey: Fast detection of selective stress on particular person websites of codon alignments. Bioinformatics 21, 2531–2533 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: Detection and evaluation of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-2.0: Bettering sequence-based B-cell epitope prediction utilizing conformational epitopes. Nucleic Acids Res. 45, W24–W29 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vita, R. et al. The Immune Epitope Database (IEDB): 2018 replace. Nucleic Acids Res. 47, D339–D343 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments