Tuesday, November 1, 2022
HomeHealth ScienceSpinocerebellar ataxia kind 31 (SCA31)

Spinocerebellar ataxia kind 31 (SCA31)


  • Ishikawa Ok, Tanaka H, Saito M, Ohkoshi N, Fujita T, Yoshizawa Ok, et al. Japanese households with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly related to delicate CAG expansions within the spinocerebellar ataxia kind 6 gene in chromosome 19p13.1. Am J Hum Genet. 1997;61:336–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagaoka U, Takashima M, Ishikawa Ok, Yoshizawa Ok, Yoshizawa T, Ishikawa M, et al. A gene on SCA4 locus causes dominantly-inherited pure cerebellar ataxia. Neurology. 2000;54:1971–5.

    Article 
    PubMed 

    Google Scholar
     

  • Li M, Ishikawa Ok, Toru S, Tomimitsu H, Takashima M, Goto J, et al. Bodily map and haplotype evaluation of 16q-linked autosomal dominant cerebellar ataxia (ADCA) kind III in Japan. J Hum Genet. 2003;48:111–8.

    Article 
    PubMed 

    Google Scholar
     

  • Ishikawa Ok, Toru S, Tsunemi T, Li M, Kobayashi Ok, Yokota T, et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is related to a single-nucleotide substitution within the 5’ untranslated area of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor area. Am J Hum Genet. 2005;77:280–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohata T, Yoshida Ok, Sakai H, Hamanoue H, Mizuguchi T, Shimizu Y, et al. A 16C>T substitution within the 5’UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano. J Hum Genet. 2006;51:461–6.

    Article 
    PubMed 

    Google Scholar
     

  • Amino T, Ishikawa Ok, Toru S, Ishiguro T, Sato N, Tsunemi T, et al. Redefining the illness locus of 16q22.1-linked autosomal dominant cerebellar ataxia. J Hum Genet. 2007;52:643–9.

    Article 
    PubMed 

    Google Scholar
     

  • Sato N, Amino T, Kobayashi Ok, Asakawa S, Ishiguro T, Tsunemi T, et al. Spinocerebellar ataxia kind 31 (SCA31) is related to “inserted” pentanucleotide repeat together with (TGGAA)n. Am J Hum Genet. 2009;68:355–67.


    Google Scholar
     

  • Sakai H, Yoshida Ok, Shimizu Y, Morita H, Ikeda S, Matsumoto N. Evaluation of an insertion mutation in a cohort of 94 sufferers with spinocerebellar ataxia kind 31 from Nagano, Japan. Neurogenetics. 2010;11:409–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee PH, Park HY, Jeong S-Y, Hong J-H, Kim HJ. 16q-linked autosomal dominant cerebellar ataxia in a Korean household. Eur J Neurol. 2007;14:e16–e17.

    Article 
    PubMed 

    Google Scholar
     

  • Lee YC, Liu CS, Lee TY, Lo YC, Lu YC, Soong BW. SCA31 is uncommon within the Chinese language inhabitants on Taiwan. Neurobiol Getting older. 2012;33:426.e23–4.

    Article 

    Google Scholar
     

  • Ouyang Y, He Z, Li L, Qin X, Zhao Y, Yuan L. Spinocerebellar ataxia kind 31 exists in Northeast China. J Neurol Sci. 2012;316:164–7.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Ok, Zeng S, Liu Z, Shi S, Solar W, Yuan Y, et al. Evaluation of spinocerebellar ataxia kind 31 associated mutations amongst sufferers from mainland China. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2018;35:309–13.

    PubMed 

    Google Scholar
     

  • Pedroso JL, Abrahao A, Ishikawa Ok, Raskin S, Sgobbi de Souza PV, Vieira de Rezende Pinto WB, et al. When ought to we check sufferers with familial ataxias for SCA31? A misdiagnosed situation exterior Japan? J Neurol Sci. 2015;355:206–8.

    Article 
    PubMed 

    Google Scholar
     

  • Ishikawa Ok, Dürr A, Klopstock T, Müller S, De Toffol B, Vidailhet M, et al. Pentanucleotide repeats on the spinocerebellar ataxia kind 31 (SCA31) locus in Caucasians. Neurology. 2011;77:1853–5.

    Article 
    PubMed 

    Google Scholar
     

  • Owada Ok, Ishikawa Ok, Toru S, Ishida G, Gomyoda M, Tao O, et al. A scientific, genetic, and pathologic research in a household with 16q-linked ADCA kind III. Neurology. 2005;65:629–32.

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura Ok, Yoshida Ok, Matsushima A, Shimizu Y, Sato S, Yahikozawa H, et al. Pure historical past of spinocerebellar Ataxia Sort 31: a 4-year potential research. Cerebellum. 2017;16:518–24.

    Article 
    PubMed 

    Google Scholar
     

  • Niimi Y, Takahashi M, Sugawara E, Umeda S, Obayashi M, Sato N, et al. Irregular RNA constructions (RNA foci) containing a penta-nucleotide repeat (UGGAA)n within the Purkinje cell nucleus is related to spinocerebellar ataxia kind 31 pathogenesis. Neuropathology. 2013;33:600–11.

    Article 
    PubMed 

    Google Scholar
     

  • Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C, Kanegami A, et al. Regulatory position of RNA Chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron. 2017;94:108–.e7.

    Article 

    Google Scholar
     

  • Echeverria GV, Cooper TA. RNA-binding proteins in microsatellite growth problems: mediators of RNA toxicity. Mind Res. 2012;1462:100–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments