Monday, September 12, 2022
HomeMicrobiologySmc5/6 silences episomal transcription by a three-step operate

Smc5/6 silences episomal transcription by a three-step operate


  • Jeppsson, Ok., Kanno, T., Shirahige, Ok. & Sjögren, C. The upkeep of chromosome construction: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15, 601–614 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gligoris, T. & Löwe, J. Structural insights into ring formation of cohesin and associated Smc complexes. Developments Cell Biol. 26, 680–693 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alt, A. et al. Specialised interfaces of Smc5/6 management hinge stability and DNA affiliation. Nat. Commun. 8, 14011 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adamus, M. et al. Molecular Insights into the structure of the human SMC5/6 advanced. J. Mol. Biol. 432, 3820–3837 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Palecek, J., Vidot, S., Feng, M., Doherty, A. J. & Lehmann, A. R. The Smc5-Smc6 DNA restore advanced: bridging of the Smc5-Smc6 heads by the kleisin, nse4, and non-kleisin subunits. J. Biol. Chem. 281, 36952–36959 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanno, T., Berta, D. G. & Sjögren, C. The Smc5/6 advanced is an ATP-dependent intermolecular DNA linker. Cell Rep. 12, 1471–1482 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aragón, L. The Smc5/6 advanced: new and outdated features of the enigmatic long-distance relative. Annu. Rev. Genet. 52, 89–107 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Palecek, J. J. SMC5/6: multifunctional participant in replication. Genes 10, 7 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Palecek, J. J. & Gruber, S. Kite proteins: a superfamily of SMC/kleisin companions conserved throughout micro organism, archaea, and eukaryotes. Construction 23, 2183–2190 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Piccoli, G. et al. Smc5-Smc6 mediate DNA double-strand-break restore by selling sister-chromatid recombination. Nat. Cell Biol. 8, 1032–1034 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Potts, P. R., Porteus, M. H. & Yu, H. Human SMC5/6 advanced promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin advanced to double-strand breaks. EMBO J. 25, 3377–3388 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ampatzidou, E., Irmisch, A., O’Connell, M. J. & Murray, J. M. Smc5/6 is required for restore at collapsed replication forks. Mol. Cell. Biol. 26, 9387–9401 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Betts Lindroos, H. et al. Chromosomal affiliation of the Smc5/6 advanced reveals that it features in in another way regulated pathways. Mol. Cell 22, 755–767 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Menolfi, D., Delamarre, A., Lengronne, A., Pasero, P. & Branzei, D. Important roles of the Smc5/6 advanced in replication by pure pausing websites and endogenous DNA harm tolerance. Mol. Cell 60, 835–846 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, X. & Heyer, W.-D. Homologous recombination in DNA restore and DNA harm tolerance. Cell Res. 18, 99–113 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bermúdez-López, M. et al. The Smc5/6 advanced is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 38, 6502–6512 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kegel, A. & Sjögren, C. The Smc5/6 advanced: greater than restore? Chilly Spring Harb. Symp. Quant. Biol. 75, 179–187 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jeppsson, Ok. et al. The chromosomal affiliation of the Smc5/6 advanced will depend on cohesion and predicts the extent of sister chromatid entanglement. PLoS Genet. 10, e1004680 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kegel, A. et al. Chromosome size influences replication-induced topological stress. Nature 471, 392–396 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Decorsière, A. et al. Hepatitis B virus X protein identifies the Smc5/6 advanced as a bunch restriction issue. Nature 531, 386–389 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Murphy, C. M. et al. Hepatitis B virus X protein promotes degradation of SMC5/6 to boost HBV replication. Cell Rep. 16, 2846–2854 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, T., Robert, E. I., van Breugel, P. C., Strubin, M. & Zheng, N. A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4–DDB1 ubiquitin ligase equipment. Nat. Struct. Mol. Biol. 17, 105–112 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Abdul, F. et al. Smc5/6 antagonism by HBx is an evolutionarily conserved operate of hepatitis B virus an infection in mammals. J. Virol. 92, e00769-18 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Breugel, P. C. et al. Hepatitis B virus X protein stimulates gene expression selectively from extrachromosomal DNA templates. Hepatology 56, 2116–2124 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Dupont, L. et al. The SMC5/6 advanced compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr. Cell Host Microbe 29, 792–805.e6 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gibson, R. T. & Androphy, E. J. The SMC5/6 advanced represses the replicative program of high-risk human papillomavirus sort 31. Pathogens 9, 786 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nagy, G. et al. Motif oriented high-resolution evaluation of ChIP-seq information reveals the topological order of CTCF and cohesin proteins on DNA. BMC Genomics 17, 637 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sutani, T. et al. Condensin targets and reduces unwound DNA constructions related to transcription in mitotic chromosome condensation. Nat. Commun. 6, 7815 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Taylor, E. M., Copsey, A. C., Hudson, J. J. R., Vidot, S. & Lehmann, A. R. Identification of the proteins, together with MAGEG1, that make up the human SMC5-6 protein advanced. Mol. Cell. Biol. 28, 1197–1206 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harvey, S. H., Krien, M. J. & O’Connell, M. J. Structural upkeep of chromosomes (SMC) proteins, a household of conserved ATPases. Genome Biol. 3, reviews3003.1 (2002).

    Article 

    Google Scholar
     

  • Arumugam, P. et al. ATP hydrolysis is required for cohesin’s affiliation with chromosomes. Curr. Biol. 13, 1941–1953 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hirano, M., Anderson, D. E., Erickson, H. P. & Hirano, T. Bimodal activation of SMC ATPase by intra- and inter-molecular interactions. EMBO J. 20, 3238–3250 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guerineau, M. et al. Evaluation of the Nse3/MAGE-binding area of the Nse4/EID household proteins. PLoS ONE 7, e35813 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hudson, J. J. R. et al. Interactions between the Nse3 and Nse4 elements of the SMC5-6 advanced determine evolutionarily conserved interactions between MAGE and EID households. PLoS ONE 6, e17270 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vondrova, L. et al. A task of the Nse4 kleisin and Nse1/Nse3 KITE subunits within the ATPase cycle of SMC5/6. Sci. Rep. 10, 9694 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Venegas, A. B., Natsume, T., Kanemaki, M. & Hickson, I. D. Inducible degradation of the human SMC5/6 advanced reveals a necessary function solely throughout interphase. Cell Rep. 31, 107533 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jo, A., Li, S., Shin, J. W., Zhao, X. & Cho, Y. Construction foundation for shaping the Nse4 protein by the Nse1 and Nse3 dimer throughout the Smc5/6 advanced. J. Mol. Biol. 433, 166910 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zabrady, Ok. et al. Chromatin affiliation of the SMC5/6 advanced depends on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 44, 1064–1079 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duan, X. et al. Structural and useful insights into the roles of the Mms21 subunit of the Smc5/6 advanced. Mol. Cell 35, 657–668 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Solé-Soler, R. & Torres-Rosell, J. Smc5/6, an atypical SMC advanced with two RING-type subunits. Biochem. Soc. Trans. 48, 2159–2171 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Zhao, X. & Blobel, G. A SUMO ligase is a part of a nuclear multiprotein advanced that impacts DNA restore and chromosomal group. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jacome, A. et al. NSMCE2 suppresses most cancers and growing older in mice independently of its SUMO ligase exercise. EMBO J. 34, 2604–2619 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Andrews, E. A. et al. Nse2, a element of the Smc5-6 advanced, is a SUMO ligase required for the response to DNA harm. Mol. Cell. Biol. 25, 185–196 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pond, Ok. W., de Renty, C., Yagle, M. Ok. & Ellis, N. A. Rescue of collapsed replication forks depends on NSMCE2 to forestall mitotic DNA harm. PLoS Genet. 15, e1007942 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Potts, P. R. & Yu, H. Human MMS21/NSE2 is a SUMO ligase required for DNA restore. Mol. Cell. Biol. 25, 7021–7032 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zapatka, M. et al. Sumoylation of Smc5 promotes error-free bypass at broken replication forks. Cell Rep. 29, 3160–3172.e4 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boulanger, M., Chakraborty, M., Tempé, D., Piechaczyk, M. & Bossis, G. SUMO and transcriptional regulation: the teachings of large-scale proteomic, modifomic and genomic research. Molecules 26, 828 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ni, H. J. et al. Depletion of SUMO ligase hMMS21 impairs G1 to S transition in MCF-7 breast most cancers cells. Biochim. Biophys. Acta 1820, 1893–1900 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niu, C. et al. The Smc5/6 advanced restricts HBV when localized to ND10 with out inducing an innate immune response and is counteracted by the HBV X protein shortly after an infection. PLoS ONE 12, e0169648 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Potts, P. R. & Yu, H. The SMC5/6 advanced maintains telomere size in ALT most cancers cells by SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14, 581–590 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pebernard, S., Wohlschlegel, J., McDonald, W. H., Yates, J. R. third & Boddy, M. N. The Nse5-Nse6 dimer mediates DNA restore roles of the Smc5-Smc6 advanced. Mol. Cell. Biol. 26, 1617–1630 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu, Y. et al. Integrative evaluation reveals distinctive structural and useful options of the Smc5/6 advanced. Proc. Natl Acad. Sci. USA 118, e2026844118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Räschle, M. et al. Proteomics reveals dynamic meeting of restore complexes throughout bypass of DNA cross-links. Science 348, 1253671 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bustard, D. E. et al. Throughout replication stress, non-Smc ingredient 5 (Nse5) is required for Smc5/6 protein advanced performance at stalled forks. J. Biol. Chem. 287, 11374–11383 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leung, G. P., Lee, L., Schmidt, T. I., Shirahige, Ok. & Kobor, M. S. Rtt107 is required for recruitment of the SMC5/6 advanced to DNA double strand breaks. J. Biol. Chem. 286, 26250–26257 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oravcová, M. et al. Brc1 promotes the focal accumulation and SUMO ligase exercise of Smc5-Smc6 throughout replication stress.Mol. Cell. Biol. 39, e00271-18 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Etheridge, T. J. et al. Dwell-cell single-molecule monitoring highlights necessities for steady Smc5/6 chromatin affiliation in vivo. eLife 10, e68579 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gutierrez-Escribano, P. et al. Purified Smc5/6 advanced displays DNA substrate recognition and compaction. Mol. Cell 80, 1039–1054.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wilhelm, L. et al. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 4, e06659 (2015).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hu, B. et al. ATP hydrolysis is required for relocating cohesin from websites occupied by its Scc2/4 loading advanced. Curr. Biol. 21, 12–24 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serrano, D. et al. The Smc5/6 core advanced is a structure-specific DNA binding and compacting machine. Mol. Cell 80, 1025–1038.e5 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu, B. et al. Qri2/Nse4, a element of the important Smc5/6 DNA restore advanced. Mol. Microbiol. 55, 1735–1750 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Båvner, A., Matthews, J., Sanyal, S., Gustafsson, J.-Å. & Treuter, E. EID3 is a novel EID member of the family and an inhibitor of CBP-dependent co-activation. Nucleic Acids Res. 33, 3561–3569 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Corpet, A. et al. PML nuclear our bodies and chromatin dynamics: catch me for those who can! Nucleic Acids Res. 48, 11890–11912 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bauer, B. W. et al. Cohesin mediates DNA loop extrusion by a ‘swing and clamp’ mechanism. Cell 184, 5448–5464.e22 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bürmann, F. et al. A folded conformation of MukBEF and cohesin. Nat. Struct. Mol. Biol. 26, 227–236 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee, B. G. et al. Cryo-EM constructions of holo condensin reveal a subunit flip-flop mechanism. Nat. Struct. Mol. Biol. 27, 743–751 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Varejão, N. et al. Structural foundation for the E3 ligase exercise enhancement of yeast Nse2 by SUMO-interacting motifs. Nat. Commun. 12, 7013 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bermúdez-López, M. et al. ATPase-dependent management of the Mms21 SUMO ligase throughout DNA restore. PLoS Biol. 13, e1002089 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Everett, R. D. The spatial group of DNA virus genomes within the nucleus. PLoS Pathog. 9, e1003386 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Michelini, Z., Negri, D. & Cara, A. Integrase faulty, nonintegrating lentiviral vectors. Strategies Mol. Biol. Clifton NJ 614, 101–110 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Cuchet-Lourenço, D., Vanni, E., Glass, M., Orr, A. & Everett, R. D. Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J. Virol. 86, 11209–11222 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Strategies 11, 783–784 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments