Tuesday, September 13, 2022
HomeMicrobiologySeasonal bacterial area of interest constructions and chemolithoautotrophic ecotypes in a North...

Seasonal bacterial area of interest constructions and chemolithoautotrophic ecotypes in a North Atlantic fjord


  • Cloern, J. E., Foster, S. Q. & Kleckner, A. E. Phytoplankton major manufacturing on this planet’s estuarine-coastal ecosystems. Biogeosciences 11, 2477–2501 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Subject, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Major manufacturing of the biosphere: Integrating terrestrial and oceanic elements. Science (80-) 281, 237–240 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gervais, C. R., Champion, C. & Pecl, G. T. Species on the transfer across the Australian shoreline: A continental scale evaluation of climate-driven species redistribution in marine methods. Glob. Chang. Biol. 685, 171–181 (2021).


    Google Scholar
     

  • Scanes, E., Scanes, P. R. & Ross, P. M. Local weather change quickly warms and acidifies Australian estuaries. Nat. Commun. 11, 1–11 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rodrigues, J. G. et al. Marine and coastal cultural ecosystem providers: information gaps and analysis priorities. One Ecosyst. 2 (2017).

  • O’Brien, T. D., Lorenzoni, L., Isensee, Ok. & Valdés, L. What are marine ecological time sequence telling us concerning the ocean. A standing report. IOC Tech. Ser. 129, 1–297 (2017).


    Google Scholar
     

  • Ajani, P. A., Davies, C. H., Eriksen, R. S. & Richardson, A. J. World warming impacts micro-phytoplankton at a long-term Pacific Ocean Coastal Station. Entrance. Mar. Sci. 7, 878 (2020).

    Article 

    Google Scholar
     

  • Wiltshire, Ok. H. et al. Helgoland roads, North Sea: 45 years of change. Estuaries Coasts 33, 295–310 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Benway, H. M. et al. Ocean time sequence observations of adjusting marine ecosystems: An period of integration, synthesis, and societal functions. Entrance. Mar. Sci. 6, 393 (2019).

    Article 

    Google Scholar
     

  • Wilson, J. M., Chamberlain, E. J., Erazo, N., Carter, M. L. & Bowman, J. S. Recurrent microbial group sorts pushed by nearshore and seasonal processes in coastal Southern California. Environ. Microbiol. 23, 3225 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28, 538–551 (1976).

    ADS 
    CAS 

    Google Scholar
     

  • Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The opposite CO2 drawback. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Falkowski, P. G. Evolution of the nitrogen cycle and its affect on the organic sequestration of CO2 within the ocean. Nature 387, 272–275 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Brown, M. V. et al. Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Sci. Information 5, 180130 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buttigieg, P. L. et al. Marine microbes in 4D—Utilizing time sequence commentary to evaluate the dynamics of the ocean microbiome and its hyperlinks to ocean well being. Curr. Opin. Microbiol. 43, 169–185 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Chow, C.-E.T. et al. Temporal variability and coherence of euphotic zone bacterial communities over a decade within the southern California Bight. ISME J. 7, 2259–2273 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krabberød, A. Ok. et al. Lengthy-term patterns of an interconnected core marine microbiota. bioRxiv 2021.03.18.435965. https://doi.org/10.1101/2021.03.18.435965 (2021).

  • Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, micro organism and archaea regardless of irregular environmental perturbations. ISME J. 13, 388–401 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Auladell, A. et al. Seasonal area of interest differentiation amongst intently associated marine micro organism. ISME J. https://doi.org/10.1038/s41396-021-01053-2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robicheau, B. M., Tolman, J., Bertrand, E. M. & LaRoche, J. Extremely-resolved interannual phytoplankton group dynamics of the coastal Northwest Atlantic. ISME Commun. 2(1), 1–12 (2022).

    Article 

    Google Scholar
     

  • Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L. & Uitz, J. The microbial carbon pump idea: Potential biogeochemical significance within the globally altering ocean. Prog. Oceanogr. 134, 432–450 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Hutchins, D. A. & Fu, F. Microorganisms and ocean world change. Nat. Microbiol. 2, 1–11 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized fashions reveal stabilizing components in meals webs. Science (80-). 325, 747–750 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gilbert, J. A. et al. Defining seasonal marine microbial group dynamics. ISME J. 6, 298–308 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Douglas, G. M. et al. PICRUSt2 for prediction of metagenome capabilities. Nat. Biotechnol. 38, 685–688 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome by single-cell genomics. Cell 179, 1623–1635 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walsh, D. A. et al. Metagenome of a flexible chemolithoautotroph from increasing oceanic lifeless zones. Science (80-). 326, 578–582 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shan, S., Sheng, J., Thompson, Ok. R. & Greenberg, D. A. Simulating the three-dimensional circulation and hydrography of Halifax Harbour utilizing a multi-nested coastal ocean circulation mannequin. Ocean Dyn. 61, 951–976 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Petrie, B. & Yeats, P. Easy fashions of the circulation, dissolved metals, suspended solids and vitamins in Halifax Harbour. Water Qual. Res. J. 25, 325–350 (1990).

    CAS 
    Article 

    Google Scholar
     

  • WK, W. L. The State of Phytoplankton and Bacterioplankton on the Compass Buoy Station: Bedford Basin Monitoring Program 1992–2013. (Fisheries and Oceans Canada = Pêches et Océans Canada, 2014).

  • Haas, S. et al. Bodily mixing in coastal waters controls and decouples nitrification by way of biomass dilution. Proc. Natl. Acad. Sci. 118, e2004877118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ibarbalz, F. M. et al. World tendencies in marine plankton variety throughout kingdoms of life. Cell 179, 1084-1097.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mittelbach, G. G. et al. What’s the noticed relationship between species richness and productiveness?. Ecology 82, 2381–2396 (2001).

    Article 

    Google Scholar
     

  • Pernthaler, J. Competitors and area of interest separation of pelagic micro organism in freshwater habitats. Environ. Microbiol. 19, 2133–2150 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science (80-) 336, 608–611 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Vallina, S. M. et al. World relationship between phytoplankton variety and productiveness within the ocean. Nat. Commun. 5, 4299 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wietz, M. et al. The polar night time shift: Annual dynamics and drivers of microbial group construction within the Arctic Ocean. bioRxiv 2021.04.08.436999. https://doi.org/10.1101/2021.04.08.436999 (2021).

  • Ladau, J. et al. World marine bacterial variety peaks at excessive latitudes in winter. ISME J. 7, 1669–1677 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sunagawa, S. et al. Construction and performance of the worldwide ocean microbiome. Science (80-). 348, 1261359 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Brown, J. H. Why are there so many species within the tropics?. J. Biogeogr. 41, 8–22 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Raes, E. J. et al. Oceanographic boundaries constrain microbial variety gradients within the South Pacific Ocean. Proc. Natl. Acad. Sci. 115, E8266–E8275 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fuhrman, J. A. et al. A latitudinal variety gradient in planktonic marine micro organism. Proc. Natl. Acad. Sci. 105, 7774–7778 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raes, E. J., Bodrossy, L., van de Kamp, J., Bissett, A. & Waite, A. M. Marine bacterial richness will increase in direction of greater latitudes within the jap Indian Ocean. Limnol. Oceanogr. Lett. 3, 10–19 (2018).

    Article 

    Google Scholar
     

  • Oksanen, J. et al. The vegan bundle. Commun. Ecol. Packag. 10, 719 (2007).


    Google Scholar
     

  • Mestre, M. et al. Sinking particles promote vertical connectivity within the ocean microbiome. Proc. Natl. Acad. Sci. 115, E6799–E6807 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • El-Swais, H., Dunn, Ok. A., Bielawski, J. P., Li, W. Ok. W. & Walsh, D. A. Seasonal assemblages and short-lived blooms in coastal north-west A tlantic O cean bacterioplankton. Environ. Microbiol. 17, 3642–3661 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raes, E. J. et al. Metabolic pathways inferred from a bacterial marker gene illuminate ecological adjustments throughout South Pacific frontal boundaries. Nat. Commun. 12, 2213 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this isn’t optionally available. Entrance. Microbiol. 8, 2224 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic micro organism. Proc. Natl. Acad. Sci. 105, 17861–17866 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wong, H. L., MacLeod, F. I., White, R. A., Visscher, P. T. & Burns, B. P. Microbial darkish matter filling the area of interest in hypersaline microbial mats. Microbiome 8, 1–14 (2020).

    Article 
    CAS 

    Google Scholar
     

  • De Cáceres, M. The right way to use the indicspecies bundle (ver. 1.7.1). R Proj. 2, 29 (2013).


    Google Scholar
     

  • Hood, R. R. et al. Pelagic purposeful group modeling: Progress, challenges and prospects. Deep Sea Res. Half II High. Stud. Oceanogr. 53, 459–512 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Solar, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction instruments varies throughout pattern sorts and purposeful classes. Microbiome 8, 1–9 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lynam, C. P. et al. Interplay between top-down and bottom-up management in marine meals webs. Proc. Natl. Acad. Sci. 114, 1952–1957 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, Z. et al. Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum natural compounds in deep ocean hydrothermal plumes. ISME J. 14, 3136–3148 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dede, B. et al. Area of interest differentiation of sulfur-oxidizing micro organism (SUP05) in submarine hydrothermal plumes. ISME J. 16(6), 1479–1490 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lavik, G. et al. Detoxing of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457, 581–584 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Swan, B. Ok. et al. Potential for chemolithoautotrophy amongst ubiquitous micro organism lineages at midnight ocean. Science (80-) 333, 1296–1300 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Taguchi, S. & Platt, T. Assimilation of 14CO2 at midnight in comparison with phytoplankton manufacturing in a small coastal inlet. Estuar. Coast. Mar. Sci. 5, 679–684 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Platt, T. & Irwin, B. Phytoplankton Manufacturing and Vitamins in Bedford Basin, 1969–1970. (1971).

  • Vega, S. et al. Morphological plasticity in a sulfur-oxidizing marine bacterium from the SUP05 clade enhances darkish carbon fixation. MBio 10, e00216-e219 (2021).


    Google Scholar
     

  • Mattes, T. E., Ingalls, A. E., Burke, S. & Morris, R. M. Metabolic flexibility of SUP05 beneath low DO development situations. Environ. Microbiol. 23, 2823 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Brown, M. V. et al. World biogeography of SAR11 marine micro organism. Mol. Syst. Biol. 8, 595 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: Proof for genome-wide adaptation. Proc. Natl. Acad. Sci. 103, 12552–12557 (2006).

  • Zorz, J. et al. Drivers of regional bacterial group construction and variety within the Northwest Atlantic Ocean. Entrance. Microbiol. 10, 281 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A customized and streamlined workflow for microbiome analysis. MSystems 2, e00127 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Each base issues: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time sequence and world discipline samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal inside transcribed spacer marker gene primers for microbial group surveys. mSystems 1, e00009-15 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

    Article 

    Google Scholar
     

  • Zhang, J., Kobert, Ok., Flouri, T. & Stamatakis, A. PEAR: A quick and correct Illumina Paired-Finish reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome information science utilizing QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Amir, A. et al. Deblur quickly resolves single-nucleotide group sequence patterns. MSystems 2, 191–16 (2017).


    Google Scholar
     

  • Callahan, B. J. et al. DADA2: Excessive-resolution pattern inference from Illumina amplicon information. Nat. Strategies 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. Naive Bayesian classifier for fast project of rRNA sequences into the brand new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database mission: Improved information processing and web-based instruments. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Langille, M. G. I. et al. Predictive purposeful profiling of microbial communities utilizing 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. phyloseq: An R bundle for reproducible interactive evaluation and graphics of microbiome census information. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lahti L. & Shetty, S.A. Instruments for Microbiome Evaluation in R. Microbiome Bundle Model 1.7.21. R/Bioconductor http://microbiome.github.com/microbiome. (2017).

  • Staff, R. C. R: A Language and Atmosphere for Statistical Computing. (2013).

  • Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article 

    Google Scholar
     

  • Schlitzer, R. Ocean Information View. 2018. Accessible odv. awi. (2015).

  • Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Bundle ‘geosphere’. in Spherical Trigonometry. Vol. 1 (2017).

  • Wickham, H. The split-apply-combine technique for information evaluation. J. Stat. Softw. 40, 1–29 (2011).


    Google Scholar
     

  • Groemping, U. & Matthias, L. Bundle ‘relaimpo’. (2021).

  • Clarke, Ok. R. & Gorley, R. N. Primer. Prim. Plymouth (2006).

  • Chytrý, M., Tichý, L., Holt, J. & Botta-Dukát, Z. Dedication of diagnostic species with statistical constancy measures. J. Veg. Sci. 13, 79–90 (2002).

    Article 

    Google Scholar
     

  • Tichy, L. & Chytry, M. Statistical willpower of diagnostic species for web site teams of unequal measurement. J. Veg. Sci. 17, 809–818 (2006).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments