Thursday, September 15, 2022
HomeBiochemistryPU.1-c-Jun interplay is essential for PU.1 perform in myeloid improvement

PU.1-c-Jun interplay is essential for PU.1 perform in myeloid improvement


  • Akashi, Ok., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic frequent myeloid progenitor that provides rise to all myeloid lineages. Nature 404, 193–197 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C. & Maki, R. A. The macrophage and B cell-specific transcription issue PU.1 is expounded to the ets oncogene. Cell 61, 113–124 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reddy, M. A. et al. Opposing actions of c-ets/PU.1 and c-myb protooncogene merchandise in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J. Exp. Med. 180, 2309–2319 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, D. E., Hetherington, C. J., Chen, H. M. & Tenen, D. G. The macrophage transcription issue PU. 1 directs tissue-specific expression of the macrophage colony-stimulating issue receptor. Mol. Cell. Biol. 14, 373–373 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hohaus, S. et al. PU. 1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating issue receptor alpha gene. Mol. Cell. Biol. 15, 5830–5830 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith, L. T., Hohaus, S., Gonzalez, D. A., Dziennis, S. E. & Tenen, D. G. PU. 1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating issue receptor promoter in myeloid cells. Blood 88, 1234–1234 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iwasaki, H. et al. Distinctive and indispensable roles of PU. 1 in upkeep of hematopoietic stem cells and their differentiation. Blood 106, 1590–1590 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Staber, P. B. et al. Sustained PU.1 ranges steadiness cell-cycle regulators to stop exhaustion of grownup hematopoietic stem cells. Mol. Cell 49, 934–946 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Staber, P. B. et al. The Runx-PU.1 pathway preserves regular and AML/ETO9a leukemic stem cells. Blood 124, 2391–2399 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosenbauer, F. et al. Acute myeloid leukemia induced by graded discount of a lineage-specific transcription issue, PU.1. Nat. Genet. 36, 624–630 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Metcalf, D. et al. Inactivation of PU. 1 in grownup mice results in the event of myeloid leukemia. Proc. Natl Acad. Sci. USA 103, 1486–1486 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burda, P. et al. PU. 1 activation relieves GATA-1–mediated repression of Cebpa and Cbfb throughout leukemia differentiation. Mol. Most cancers Res. 7, 1693–1693 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liew, C. W. Molecular evaluation of the interplay between the hematopoietic grasp transcription elements GATA-1 and PU.1. J. Biol. Chem. 281, 28296–28306 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 transcription issue and represses PU.1-dependent transcription. Blood 95, 2543–2551 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stopka, T., Amanatullah, D. F., Papetti, M. & Skoultchi, A. I. PU. 1 inhibits the erythroid program by binding to GATA-1 on DNA and making a repressive chromatin construction. EMBO J. 24, 3712–3712 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takemoto, C. M. et al. PU.1 positively regulates GATA-1 expression in mast cells. J. Immunol. 184 4349–4361 (2010).

  • Zhang, P. et al. Unfavorable cross-talk between hematopoietic regulators: GATA proteins repress PU. 1. Proc. Natl Acad. Sci. USA 96, 8705–8705 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, P. et al. PU. 1 inhibits GATA-1 perform and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96, 2641–2641 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Walsh, J. C. et al. Cooperative and antagonistic interaction between PU. 1 and GATA-2 within the specification of myeloid cell fates. Immunity 17, 665–676 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang, H. C. et al. PU. 1 regulates TCR expression by modulating GATA-3 exercise. J. Immunol. 183, 4887–4887 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang, H.-C. et al. PU.1 expression delineates heterogeneity in major Th2 cells. Immunity 22, 693–703 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petrovick, M. S. et al. A number of useful domains of AML1: PU. 1 and C/EBPalpha synergize with totally different areas of AML1. Mol. Cell. Biol. 18, 3915–3915 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reddy, V. A. et al. Granulocyte inducer C/EBPalpha inactivates the myeloid grasp regulator PU.1: potential position in lineage dedication selections. Blood 100, 483–490 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, Z., Wara-Aswapati, N., Chen, C., Tsukada, J. & Auron, P. E. NF-IL6 (C/EBPbeta) vigorously prompts il1b gene expression through a Spi-1 (PU.1) protein-protein tether. J. Biol. Chem. 275, 21272–21277 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ueki, N., Zhang, L. & Haymann, M. J. Ski can negatively regulates macrophage differentiation by way of its interplay with PU.1. Oncogene 27, 300–307 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Laricchia-Robbio, L., Premanand, Ok., Rinaldi, C. R. & Nucifora, G. EVI1 impairs myelopoiesis by deregulation of PU. 1 perform. Most cancers Res. 69, 1633–1633 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rekhtman, N. et al. PU. 1 and pRB work together and cooperate to repress GATA-1 and block erythroid differentiation. Mol. Cell. Biol. 23, 7460–7460 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei, F., Zaprazna, Ok., Wang, J. & Atchison, M. L. PU.1 can recruit BCL6 to DNA to repress gene expression in germinal heart B cells. Mol. Cell. Biol. 29, 4612–4622 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pongubala, J. M. et al. PU.1 recruits a second nuclear issue to a website vital for immunoglobulin kappa 3’ enhancer exercise. Mol. Cell. Biol. 12, 368–378 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meraro, D. et al. Protein-protein and DNA-protein interactions have an effect on the exercise of lymphoid-specific IFN regulatory elements. J. Immunol. 163, 6468–6478 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Akashi, Ok. Lineage promiscuity and plasticity in hematopoietic improvement. Ann. N. Y. Acad. Sci. 1044, 125–131 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Rekhtman, N., Radparvar, F., Evans, T. & Skoultchi, A. I. Direct interplay of hematopoietic transcription elements PU.1 and GATA-1: useful antagonism in erythroid cells. Genes Dev. 13, 1398–1411 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lord, Ok. A., Abdollahi, A., Hoffman-Liebermann, B. & Liebermann, D. A. Proto-oncogenes of the fos/jun household of transcription elements are optimistic regulators of myeloid differentiation. Mol. Cell. Biol. 13, 841–851 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mechta-Grigoriou, F., Gerald, D. & Yaniv, M. The mammalian Jun proteins: redundancy and specificity. Oncogene 20, 2378–2389 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jochum, W., Passegué, E. & Wagner, E. F. AP-1 in mouse improvement and tumorigenesis. Oncogene 20, 2401–2412 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Passegué, E., Wagner, E. F. & Weissman, I. L. JunB deficiency results in a myeloproliferative dysfunction arising from hematopoietic stem cells. Cell 119, 431–443 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Gaynor, R., Simon, Ok. & Koeffler, P. Expression of c-jun throughout macrophage differentiation of HL-60 cells. Blood 77, 2618–2623 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hass, R., Prudovsky, I. & Kruhøffer, M. Differential results of phorbol ester on signaling and gene expression in human leukemia cells. Leuk. Res. 21, 589–594 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sherman, M. L., Stone, R. M., Datta, R., Bernstein, S. H. & Kufe, D. W. Transcriptional and post-transcriptional regulation of c-jun expression throughout monocytic differentiation of human myeloid leukemic cells. J. Biol. Chem. 265, 3320–3323 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grant, S. et al. Impact of 1-beta-D-arabinofuranosylcytosine on apoptosis and differentiation in human monocytic leukemia cells (U937) expressing a c-Jun dominant-negative mutant protein (TAM67). Cell Development Differ. 7, 603–613 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Behre, G. et al. c-Jun is a JNK-independent coactivator of the PU. 1 transcription issue. J. Biol. Chem. 274, 4939–4946 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grondin, B. et al. c-Jun homodimers can perform as a context-specific coactivator. Mol. Cell. Biol. 27, 2919–2933 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jia, X., Lee, L. Ok., Gentle, J., Palmer, A. G. & Assa-Munt, N. Spine dynamics of a brief PU.1 ETS area. J. Mol. Biol. 292, 1083–1093 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kodandapani, R. et al. A brand new sample for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA advanced. Nature 380, 456–460 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bassuk, A. G. & Leiden, J. M. A direct bodily affiliation between ETS and AP-1 transcription elements in regular human T cells. Immunity 3, 223–237 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vangala, R. Ok. et al. The myeloid grasp regulator transcription issue PU. 1 is inactivated by AML1-ETO in t (8; 21) myeloid leukemia. Blood 101, 270–270 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Uppaluri, R. & Towle, H. C. Genetic dissection of thyroid hormone receptor beta: identification of mutations that separate hormone binding and transcriptional activation. Mol. Cell. Biol. 15, 1499–1512 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shih, H. M. et al. A optimistic genetic choice for disrupting protein-protein interactions: identification of CREB mutations that stop affiliation with the coactivator CBP. Proc. Natl Acad. Sci. USA 93, 13896–13901 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Escalante, C. R. et al. Crystallization and characterization of PU.1/IRF-4/DNA ternary advanced. J. Struct. Biol. 139, 55–59 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McKercher, S. R., Lombardo, C. R., Bobkov, A., Jia, X. & Assa-Munt, N. Identification of a PU. 1–IRF4 protein interplay floor predicted by chemical alternate line broadening. Proc. Natl Acad. Sci. USA 100, 511–511 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Szabo, E., Preis, L. H. & Birrer, M. J. Constitutive cJun expression induces partial macrophage differentiation in U-937 cells. Cell Development Differ. 5, 439–446 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, J., King, I. & Sartorelli, A. C. Differentiation of WEHI-3B D+ myelomonocytic leukemia cells induced by ectopic expression of the protooncogene c-jun. Cell Development Differ. 5, 743–751 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. & Studzinski, G. P. The requirement for and altering composition of the activating protein-1 transcription issue throughout differentiation of human leukemia HL60 cells induced by 1,25-dihydroxyvitamin D3. Most cancers Res. 66, 4402–4409 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anderson, Ok. L., Smith, Ok. A., Pio, F., Torbett, B. E. & Maki, R. A. Neutrophils poor in PU. 1 don’t terminally differentiate or turn out to be functionally competent. Blood 92, 1576–1576 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pear, W. S. et al. Environment friendly and fast induction of a persistent myelogenous leukemia-like myeloproliferative illness in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weigelt, Ok., Lichtinger, M., Rehli, M. & Langmann, T. Transcriptomic profiling identifies a PU.1 regulatory community in macrophages. Biochem. Biophys. Res. Commun. 380, 308–312 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Otero, Ok. et al. Macrophage colony-stimulating issue induces the proliferation and survival of macrophages through a pathway involving DAP12 and beta-catenin. Nat. Immunol. 10, 734–743 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heinz, S. et al. Easy combos of lineage-determining transcription elements prime cis-regulatory components required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zambelli, F., Pesole, G. & Pavesi, G. Pscan: discovering over-represented transcription issue binding website motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res. 37, W247–W252 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Portales-Casamar, E. et al. JASPAR 2010: the vastly expanded open-access database of transcription issue binding profiles. Nucleic Acids Res. 38, D105–D110 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Badis, G. et al. Variety and complexity in DNA recognition by transcription elements. Science 324, 1720–1723 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gangenahalli, G. U. et al. Stem cell destiny specification: position of grasp regulatory swap transcription issue PU. 1 in differential hematopoiesis. Stem Cells Dev. 14, 140–152 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tenen, D. G., Hromas, R., Licht, J. D. & Zhang, D. E. Transcription elements, regular myeloid improvement, and leukemia. Blood 90, 489–519 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spooner, C. J., Cheng, J. X., Pujadas, E., Laslo, P. & Singh, H. A recurrent community involving the transcription elements PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity 31, 576–586 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Steidl, U. et al. Important position of Jun household transcription elements in PU.1 knockdown–induced leukemic stem cells. Nat. Genet. 38, 1269–1277 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells missing erythro-megakaryocytic potentiala revised street map for grownup blood lineage dedication. Cell 121, 295–306 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lavau, C., Szilvassy, S. J., Slany, R. & Cleary, M. L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 16, 4226–4237 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine mannequin of human t(8;21) acute myeloid leukemia. Most cancers Cell 1, 63–74 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huntly, B. J. et al. MOZ-TIF2, however not BCR-ABL, confers properties of leukemic stem cells to dedicated murine hematopoietic progenitors. Most cancers Cell 6, 587–596 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pahl, H. L. et al. The proto-oncogene PU.1 regulates expression of the myeloid-specific CD11b promoter. J. Biol. Chem. 268, 5014–5020 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Behre, G., Smith, L. T. & Tenen, D. G. Use of a promoterless Renilla luciferase vector as an inner management plasmid for transient co-transfection assays of Ras-mediated transcription activation. BioTechniques 26, 24–26, 28-24-26, 28 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • DeKoter, R. P., Lee, H.-J. & Singh, H. PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16, 297–309 (2002).

  • Tusher, V. G., Tibshirani, R. & Chu, G. Significance evaluation of microarrays utilized to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saeed, A. I. et al. TM4: a free, open-source system for microarray information administration and evaluation. BioTechniques 34, 374–378 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schrodinger, LLC. The PyMOL Molecular Graphics System, Model 1.8 (2015).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments