Wednesday, November 2, 2022
HomeMicrobiologyMonkeypox: epidemiology, pathogenesis, remedy and prevention

Monkeypox: epidemiology, pathogenesis, remedy and prevention


  • Bunge, E. M. et al. The altering epidemiology of human monkeypox-a potential menace? A scientific evaluate. PLoS Negl. Trop. Dis. 16, e0010141 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Multi-country monkeypox outbreak in non-endemic nations. https://www.who.int/emergencies/disease-outbreak-news/merchandise/2022-DON385 (2022).

  • UKHSA. Steerage: monkeypox: background info. https://www.gov.uk/steering/monkeypox (2022).

  • ECDC. Epidemiological replace: monkeypox multi-country outbreak. https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-multi-country-outbreak (2022).

  • Walter, Ok. & Malani, P. N. What’s monkeypox? JAMA 328, 222 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • ECDC. Threat evaluation: monkeypox multi-country outbreak. https://www.ecdc.europa.eu/en/publications-data/risk-assessment-monkeypox-multi-country-outbreak (2022).

  • WHO. Monkeypox reality sheet. https://www.who.int/news-room/fact-sheets/element/monkeypox (2022).

  • Kraemer, M. U. G. et al. Monitoring the 2022 monkeypox outbreak with epidemiological knowledge in real-time. Lancet Infect. Dis. 22, 941–942 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zumla, A. et al. Monkeypox outbreaks exterior endemic areas: scientific and social priorities. Lancet Infect. Dis. 22, 929–931 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatesan, P. World monkeypox outbreak. Lancet Infect. Dis. 22, 950 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. WHO Director-Common declares the continued monkeypox outbreak a public well being emergency of worldwide concern. https://www.who.int/europe/information/merchandise/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern (2022).

  • Zarocostas, J. Monkeypox PHEIC determination hoped to spur the world to behave. Lancet 400, 347 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CDC. 2022 Monkeypox outbreak world map. https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html (2022).

  • Faye, O. et al. Genomic characterisation of human monkeypox virus in Nigeria. Lancet Infect. Dis. 18, 246 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Marennikov, S. S. & Moyer, R. W. In Orthopoxviruses Pathogenic for People 11–18 (Springer, 2005).

  • Shchelkunov, S. N. An rising hazard of zoonotic orthopoxvirus infections. PLoS Pathog. 9, e1003756 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shchelkunov, S. N. et al. Human monkeypox and smallpox viruses: genomic comparability. FEBS Lett. 509, 66–70 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gubser, C., Hue, S., Kellam, P. & Smith, G. L. Poxvirus genomes: a phylogenetic evaluation. J. Gen. Virol. 85, 105–117 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • WHO. Smallpox. https://www.who.int/health-topics/smallpox#tab=tab_1 (2022).

  • Henderson, D. A. The eradication of smallpox-an overview of the previous, current, and future. Vaccine 29(Suppl. 4), D7–D9 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, G. L. & McFadden, G. Smallpox: something to declare? Nat. Rev. Immunol. 2, 521–527 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strassburg, M. A. The worldwide eradication of smallpox. Am. J. Infect. Management. 10, 53–59 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parker, S., Nuara, A., Buller, R. M. & Schultz, D. A. Human monkeypox: an rising zoonotic illness. Future Microbiol. 2, 17–34 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayer-Garner, I. B. Monkeypox virus: histologic, immunohistochemical and electron-microscopic findings. J. Cutan. Pathol. 32, 28–34 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sale, T. A., Melski, J. W. & Stratman, E. J. Monkeypox: an epidemiologic and medical comparability of African and US illness. J. Am. Acad. Dermatol. 55, 478–481 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Saijo, M. et al. Virulence and pathophysiology of the Congo Basin and West African strains of monkeypox virus in non-human primates. J. Gen. Virol. 90, 2266–2271 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alakunle, E. F. & Okeke, M. I. Monkeypox virus: a uncared for zoonotic pathogen spreads globally. Nat. Rev. Microbiol. 20, 507–508 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jezek, Z., Szczeniowski, M., Paluku, Ok. M. & Mutombo, M. Human monkeypox: medical options of 282 sufferers. J. Infect. Dis. 156, 293–298 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parker, S. & Buller, R. M. A evaluate of experimental and pure infections of animals with monkeypox virus between 1958 and 2012. Future Virol. 8, 129–157 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guarner, J. et al. Monkeypox transmission and pathogenesis in prairie canines. Emerg. Infect. Dis. 10, 426–431 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutson, C. L. et al. Dosage comparability of Congo Basin and West African strains of monkeypox virus utilizing a prairie canine animal mannequin of systemic orthopoxvirus illness. Virology 402, 72–82 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, N. et al. Virulence variations between monkeypox virus isolates from West Africa and the Congo basin. Virology 340, 46–63 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ladnyj, I. D., Ziegler, P. & Kima, E. A human an infection attributable to monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Well being Organ. 46, 593–597 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marennikova, S. S. et al. Isolation and properties of the causal agent of a brand new variola-like illness (monkeypox) in man. Bull. World Well being Organ. 46, 599–611 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Von Magnus, P., Andersen, E. Ok., Petersen, Ok. B. & Birch-Andersen, A. A. A pox-like illness in cynomolgus monkeys. Acta Pathol. Microbiol. Scand. 46, 156–176 (1959).

  • Damon, I. Ok. Standing of human monkeypox: medical illness, epidemiology and analysis. Vaccine 29(Suppl. 4), D54–D59 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Alakunle, E., Moens, U., Nchinda, G. & Okeke, M. I. Monkeypox virus in Nigeria: an infection biology, epidemiology, and evolution. Viruses. 12, 1257 (2020).

  • Orviz, E. et al. Monkeypox outbreak in Madrid (Spain): medical and virological facets. J. Infect. 85, 412–417 (2022).

  • Isidro, J. et al. Phylogenomic characterization and indicators of microevolution within the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 28, 1569–1572 (2022).

  • Claro, I. M. et al. Shotgun metagenomic sequencing of the primary case of monkeypox virus in Brazil, 2022. Rev. Inst. Med. Trop. Sao Paulo 64, e48 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luna, N. et al. Phylogenomic evaluation of the monkeypox virus (MPXV) 2022 outbreak: emergence of a novel viral lineage? Journey Med. Infect. Dis. 49, 102402 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minhaj, F. S. et al. Monkeypox outbreak – 9 states, Might 2022. MMWR Morb. Mortal. Wkly Rep. 71, 764–769 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isidro, J., Borges, V. & Pinto, M. First draft genome sequence of Monkeypox virus related to the suspected multi-country outbreak, Might 2022 (confirmed case in Portugal). https://virological.org/t/first-draft-genome-sequence-of-monkeypox-virus-associated-with-the-suspected-multi-country-outbreak-may-2022-confirmed-case-in-portugal/799 (2022).

  • Thakur, V., Thakur, P., Srivastava, S. & Kumar, P. Monkeypox virus (MPX) in people a priority: trespassing the worldwide boundaries – correspondence. Int. J. Surg. 104, 106703 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, L. Monkeypox: issues mount over vaccine inequity. BMJ 378, o1971 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Taylor, L. Monkeypox: WHO declares a public well being emergency of worldwide concern. BMJ 378, o1874 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Leon-Figueroa, D. A. et al. The endless world emergence of viral zoonoses after COVID-19? The rising concern of monkeypox in Europe, North America and past. Journey Med. Infect. Dis. 49, 102362 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Ok., Guo, Q., Zhou, Y. & Wu, H. Concern over monkeypox outbreak: what can we be taught from the highest 100 extremely cited articles in monkeypox analysis? Journey Med. Infect. Dis. 49, 102371 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Awan, U. A. et al. Monkeypox: a brand new menace at our doorstep! J. Infect. 85, e47–e48 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otu, A. et al. World human monkeypox outbreak: atypical presentation demanding pressing public well being motion. Lancet Microbe 3, e554–e555 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The, L. Monkeypox: a worldwide wake-up name. Lancet 400, 337 (2022).

    Article 

    Google Scholar
     

  • Jezek, Z. et al. Human monkeypox: secondary assault charges. Bull. World Well being Organ. 66, 465–470 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jezek, Z. et al. Clinico-epidemiological options of monkeypox sufferers with an animal or human supply of an infection. Bull. World Well being Organ. 66, 459–464 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jezek, Z., Seize, B., Paluku, Ok. M. & Szczeniowski, M. V. Human monkeypox: illness sample, incidence and assault charges in a rural space of northern Zaire. Trop. Geogr. Med. 40, 73–83 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Khodakevich, L. et al. Monkey pox virus an infection in people within the Central African Republic. Bull. Soc. Pathol. Exot. Filiales 78, 311–320 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, A. et al. First look of monkey pox in human beings iControl and Prevention. Human monkeypox–Kasai Oriental, Democraticn Gabon. Med Trop. (Mars). 51, 53–57 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Jezek, Z. F. F. Human Monkeypox (Karger, 1988).

  • Lourie, B. et al. Human an infection with monkeypox virus: laboratory investigation of six instances in West Africa. Bull. World Well being Organ. 46, 633–639 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arita, I. & Henderson, D. A. Monkeypox and whitepox viruses in West and Central Africa. Bull. World Well being Organ. 53, 347–353 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merouze, F. & Lesoin, J. J. Monkeypox: second human case noticed in Ivory Coast (rural well being sector of Daloa. Med Trop. (Mars). 43, 145–147 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Heymann, D. L., Szczeniowski, M. & Esteves, Ok. Re-emergence of monkeypox in Africa: a evaluate of the previous six years. Br. Med. Bull. 54, 693–702 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tchokoteu, P. F. et al. Variola or a extreme case of varicella? A case of human variola on account of monkeypox virus in a toddler from the Cameroon. Ann. Soc. Belg. Med. Trop. 71, 123–128 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Facilities for Illness Management and Prevention. Human monkeypox–Kasai Oriental, Democratic Republic of Congo, February 1996-October 1997. JAMA. 279, 189–190 (1998).

  • Mwanbal, P. T. et al. Human monkeypox in Kasai Oriental, Zaire (1996-1997). Eur. Surveill. 2, 33–35 (1997).

    Article 

    Google Scholar
     

  • Mukinda, V. B. et al. Re-emergence of human monkeypox in Zaire in 1996. Monkeypox Epidemiologic Working Group. Lancet 349, 1449–1450 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, H. et al. Outbreaks of illness suspected of being on account of human monkeypox virus an infection within the Democratic Republic of Congo in 2001. J. Clin. Microbiol. 40, 2919–2921 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimoin, A. W. et al. Endemic human monkeypox, Democratic Republic of Congo, 2001-2004. Emerg. Infect. Dis. 13, 934–937 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynolds, M. G. et al. Spectrum of an infection and danger components for human monkeypox, United States, 2003. Emerg. Infect. Dis. 13, 1332–1339 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reed, Ok. D. et al. The detection of monkeypox in people within the Western Hemisphere. N. Engl. J. Med. 350, 342–350 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reynolds, M. G. et al. Scientific manifestations of human monkeypox influenced by route of an infection. J. Infect. Dis. 194, 773–780 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Huhn, G. D. et al. Scientific traits of human monkeypox, and danger components for extreme illness. Clin. Infect. Dis. 41, 1742–1751 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Discovered, L. A. et al. Prolonged interhuman transmission of monkeypox in a hospital neighborhood within the Republic of the Congo, 2003. Am. J. Trop. Med. Hyg. 73, 428–434 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Damon, I. Ok., Roth, C. E. & Chowdhary, V. Discovery of monkeypox in Sudan. N. Engl. J. Med. 355, 962–963 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCollum, A. M. et al. Human monkeypox within the Kivus, a battle area of the Democratic Republic of the Congo. Am. J. Trop. Med. Hyg. 93, 718–721 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolen, L. D. et al. Prolonged human-to-human transmission throughout a monkeypox outbreak within the Democratic Republic of the Congo. Emerg. Infect. Dis. 22, 1014–1021 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durski, Ok. N. et al. Emergence of monkeypox – West and Central Africa, 1970-2017. MMWR Morb. Mortal. Wkly Rep. 67, 306–310 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalthan, E. et al. Twelve instances of monkeypox virus outbreak in Bangassou District (Central African Republic) in December 2015. Bull. Soc. Pathol. Exot. 109, 358–363 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthet, N. et al. Maculopapular lesions within the Central African Republic. Lancet 378, 1354 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Sadeuh-Mba, S. A. et al. Monkeypox virus phylogenetic similarities between a human case detected in Cameroon in 2018 and the 2017-2018 outbreak in Nigeria. Infect. Genet. Evol. 69, 8–11 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beer, E. M. & Rao, V. B. A scientific evaluate of the epidemiology of human monkeypox outbreaks and implications for outbreak technique. PLoS Negl. Trop. Dis. 13, e0007791 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D. et al. Analysis of the GeneXpert for human monkeypox prognosis. Am. J. Trop. Med. Hyg. 96, 405–410 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynolds, M. G. et al. Detection of human monkeypox within the Republic of the Congo following intensive neighborhood schooling. Am. J. Trop. Med. Hyg. 88, 982–985 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yinka-Ogunleye, A. et al. Outbreak of human monkeypox in Nigeria in 2017-18: a medical and epidemiological report. Lancet Infect. Dis. 19, 872–879 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yinka-Ogunleye, A. et al. Reemergence of human monkeypox in Nigeria, 2017. Emerg. Infect. Dis. 24, 1149–1151 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabuga, A. I. & El Zowalaty, M. E. A evaluate of the monkeypox virus and a current outbreak of pores and skin rash illness in Nigeria. J. Med. Virol. 91, 533–540 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hobson, G. et al. Household cluster of three instances of monkeypox imported from Nigeria to the UK, Might 2021. Euro Surveill. 26, 2100745 (2021).

  • Vaughan, A. et al. Human-to-human transmission of monkeypox virus, United Kingdom, October 2018. Emerg. Infect. Dis. 26, 782–785 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaughan, A. et al. Two instances of monkeypox imported to the UK, September 2018. Euro Surveill. 23, 1800509 (2018).

  • Yong, S. E. F. et al. Imported monkeypox, Singapore. Emerg. Infect. Dis. 26, 1826–1830 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, O. T. et al. A case of imported monkeypox in Singapore. Lancet Infect. Dis. 19, 1166 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erez, N. et al. Analysis of imported monkeypox, Israel, 2018. Emerg. Infect. Dis. 25, 980–983 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen-Gihon, I. et al. Identification and whole-genome sequencing of a monkeypox virus pressure remoted in Israel. Microbiol. Resour. Announc. 9, e01524-19 (2020).

  • Rao, A. Ok. et al. Monkeypox in a traveler getting back from Nigeria – Dallas, Texas, July 2021. MMWR Morb. Mortal. Wkly Rep. 71, 509–516 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Monkeypox– United Kingdom of Nice Britain and Northern Eire. https://www.who.int/emergencies/disease-outbreak-news/merchandise/2022-DON381 (2022).

  • BBC. Monkeypox: two extra confirmed instances of viral an infection. https://www.bbc.com/information/uk-england-london-61449214 (2022).

  • BBC. Monkeypox: 4 extra instances detected in England. https://www.bbc.com/information/health-61470940 (2022).

  • Sklenovska, N. & Van Ranst, M. Emergence of monkeypox as an important orthopoxvirus an infection in people. Entrance. Public Well being 6, 241 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Likos, A. M. et al. A story of two clades: monkeypox viruses. J. Gen. Virol. 86, 2661–2672 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monkeypox. There are already 14 instances of monkeypox in Portugal. www.dn.pt (in European Portuguese) (2022).

  • Güell, O. Well being confirms that the analyzes of the primary seven suspected instances of monkeypox have examined optimistic. https://newsrnd.com/life/2022-05-18-health-confirms-that-the-analyzes-of-the-first-seven-suspected-cases-of-monkeypox-have-tested-positive.SkhHqy7v5.html (2022).

  • ICI.Radio-Canada.ca, Z. S. Monkey pox: a minimum of 13 instances being examined in Montreal. https://www.archyde.com/monkey-pox-at-least-13-cases-being-examined-in-montreal/ (2022).

  • Sobey, R. Massachusetts confirms uncommon monkeypox case, the primary within the US this yr. In Boston Herald (2022).

  • First an infection with monkey pox virus detected in our nation. VRT NWS (2022).

  • A case of smallpox reported in Sweden – Public Well being Company. https://net.archive.org/net/20220519110819/https://www.folkhalsomyndigheten.se/nyheter-och-press/nyhetsarkiv/2022/maj/ett-fall-av-apkoppor-rapporterat-i-sverige/ (2022).

  • Italy stories first case of monkeypox an infection, two extra suspected. Reuters (2022).

  • Parkes-Hupton, H. & Johnson, S. Monkeypox confirmed in Melbourne and Sydney. ABC Information. Australian Broadcasting Fee (2022).

  • Monkeypox instances investigated in Europe, US, Canada and Australia. BBC Information (2022).

  • France, Germany, Belgium report first monkeypox instances amid uncommon unfold in Europe. https://www.msn.com/en-gb/information/world/france-germany-belgium-report-first-monkeypox-cases-amid-unusual-spread-in-europe/ar-AAXwdCU (2022).

  • Dutch well being company confirms first monkeypox case within the Netherlands. Reuters (2022).

  • Noe, S. et al. Scientific and virological options of first human monkeypox instances in Germany. An infection https://doi.org/10.1007/s15010-022-01874-z (2022).

  • Switzerland confirms its first case of monkeypox. https://www.reuters.com/world/europe/switzerland-confirms-its-first-case-monkeypox-2022-05-21/ (2022).

  • Israel confirms first case of monkeypox virus. https://www.haaretz.com/israel-news/2022-05-20/ty-article/israel-discovers-first-case-of-monkeypox-virus/00000180-e9f9-d189-af82-f9fd13df0000 (2022).

  • Abed Alah, M., Abdeen, S., Tayar, E. & Bougmiza, I. The story behind the primary few instances of monkeypox an infection in non-endemic nations, 2022. J. Infect. Public Well being 15, 970–974 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuzzo, J. B., Borio, L. L. & Gostin, L. O. The WHO declaration of monkeypox as a worldwide public well being emergency. JAMA 328, 615–617 (2022).

  • Wenham, C. & Eccleston-Turner, M. Monkeypox as a PHEIC: implications for world well being governance. Lancet https://doi.org/10.1016/S0140-6736(22)01437-4 (2022).

  • Webb, E. et al. Availability, scope and high quality of monkeypox medical administration tips globally: a scientific evaluate. BMJ Glob. Well being. 7, e009838 (2022).

  • CHP investigates imported monkeypox case and alert stage of the preparedness and response plan for monkeypox activated. https://www.data.gov.hk/gia/basic/202209/06/P2022090600594.htm?fontSize=1 (2022).

  • Yang, Z. S. et al. The primary monkeypox virus an infection detected in Taiwan-the consciousness and preparation. Int. J. Infect. Dis. 122, 991–995 (2022).

  • CDC. Monkeypox, Taiwan. https://www.cdc.gov.tw/Illness/SubIndex/G3A6nyt8JmqIUcUF5Pek6w (2022).

  • U.S. declares monkeypox outbreak a public well being emergency. https://www.reuters.com/world/us/us-declare-monkeypox-public-health-emergency-washington-post-2022-08-04/ (2022).

  • CDC. 2022 U.S. map & case depend. https://www.cdc.gov/poxvirus/monkeypox/response/2022/us-map.html (2022).

  • Philpott, D. et al. Epidemiologic and medical traits of monkeypox instances – United States, Might 17-July 22, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1018–1022 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Giulio, D. B. & Eckburg, P. B. Human monkeypox: an rising zoonosis. Lancet Infect. Dis. 4, 15–25 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Mutombo, M., Arita, I. & Jezek, Z. Human monkeypox transmitted by a chimpanzee in a tropical rain-forest space of Zaire. Lancet 1, 735–737 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khodakevich, L., Jezek, Z. & Kinzanzka, Ok. Isolation of monkeypox virus from wild squirrel contaminated in nature. Lancet 1, 98–99 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutson, C. L. et al. Laboratory investigations of African pouched rats (Cricetomys gambianus) as a possible reservoir host species for monkeypox virus. PLoS Negl. Trop. Dis. 9, e0004013 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutin, Y. J. et al. Outbreak of human monkeypox, Democratic of Congo, 1996 to 1997. Emerg. Infect. Dis. 7, 434–438 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolen, L. D. et al. Introduction of monkeypox right into a neighborhood and family: danger components and zoonotic reservoirs within the Democratic Republic of the Congo. Am. J. Trop. Med. Hyg. 93, 410–415 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khodakevich, L. et al. The function of squirrels in sustaining monkeypox virus transmission. Trop. Geogr. Med. 39, 115–122 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Khodakevich, L., Jezek, Z. & Messinger, D. Monkeypox virus: ecology and public well being significance. Bull. World Well being Organ. 66, 747–752 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radonic, A. et al. Deadly monkeypox in wild-living sooty mangabey, Cote d’Ivoire, 2012. Emerg. Infect. Dis. 20, 1009–1011 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patrono, L. V. et al. Monkeypox virus emergence in wild chimpanzees reveals distinct medical outcomes and viral variety. Nat. Microbiol. 5, 955–965 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doty, J. B. et al. Assessing monkeypox virus prevalence in small mammals on the human-animal interface within the Democratic Republic of the Congo. Viruses. 9, 283 (2017).

  • Reynolds, M. G. et al. Monkeypox re-emergence in Africa: a name to develop the idea and observe of One Well being. Professional Rev. Antiinfect. Ther. 17, 129–139 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hutson, C. L. et al. Comparability of monkeypox virus clade kinetics and pathology inside the prairie canine animal mannequin utilizing a serial sacrifice research design. Biomed. Res. Int. 2015, 965710 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutson, C. L. et al. Transmissibility of the monkeypox virus clades through respiratory transmission: investigation utilizing the prairie dog-monkeypox virus problem system. PLoS ONE 8, e55488 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutson, C. L. et al. Monkeypox illness transmission in an experimental setting: prairie canine animal mannequin. PLoS ONE 6, e28295 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, C. C. et al. Monkeypox: an rising world menace in the course of the COVID-19 pandemic. J Microbiol. Immunol. Infect. https://doi.org/10.1016/j.jmii.2022.07.004 (2022).

  • Zhu, M. et al. Uncommon world outbreak of monkeypox: what ought to we do? Entrance. Med. 16, 507–517 (2022).

  • Kaler, J. et al. Monkeypox: a complete evaluate of transmission, pathogenesis, and manifestation. Cureus 14, e26531 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, N., Acharya, A., Gendelman, H. E. & Byrareddy, S. N. The 2022 outbreak and the pathobiology of the monkeypox virus. J. Autoimmun. 131, 102855 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastula, D. M. & Tyler, Ok. L. An summary of monkeypox virus and its neuroinvasive potential. Ann. Neurol. 92, 527–531 (2022).

  • Brown, Ok. & Leggat, P. A. Human monkeypox: present state of data and implications for the long run. Trop. Med. Infect. Dis. 1, 8 (2016).

  • Vivancos, R. et al. Group transmission of monkeypox in the UK, April to Might 2022. Euro Surveill. 27, 2200422 (2022).

  • Kisalu, N. Ok. & Mokili, J. L. Towards understanding the outcomes of monkeypox an infection in human being pregnant. J. Infect. Dis. 216, 795–797 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fahrni, M. L., Priyanka & Choudhary, O. P. Risk of vertical transmission of the human monkeypox virus. Int. J. Surg. 105, 106832 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mbala, P. Ok. et al. Maternal and fetal outcomes amongst pregnant ladies with human monkeypox an infection within the Democratic Republic of Congo. J. Infect. Dis. 216, 824–828 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Thornhill, J. P. et al. Monkeypox virus an infection in people throughout 16 nations – April-June 2022. N. Engl. J. Med. 387, 679–691 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalil, A. et al. Monkeypox vaccines in being pregnant: classes have to be realized from COVID-19. Lancet Glob. Well being 10, e1230–e1231 (2022).

  • Dashraath, P. et al. Pointers for pregnant people with monkeypox virus publicity. Lancet 400, 21–22 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vouga, M., Nielsen-Saines, Ok., Dashraath, P. & Baud, D. The monkeypox outbreak: dangers to youngsters and pregnant ladies. Lancet Youngster Adolesc. Well being https://doi.org/10.1016/S2352-4642(22)00223-1 (2022).

  • Pomar, L., Favre, G. & Baud, D. Monkeypox an infection throughout being pregnant: European registry to quantify maternal and fetal dangers. Ultrasound Obstet. Gynecol. 60, 431 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalil, A. et al. Monkeypox and being pregnant: what do obstetricians have to know? Ultrasound Obstet. Gynecol. 60, 22–27 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalil, A. et al. Monkeypox vaccines in being pregnant: classes have to be realized from COVID-19. Lancet Glob. Well being 10, e1230–e1231 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalil, A., Samara, A., O’Brien, P. & Ladhani, S. Name for a unified strategy to Monkeypox an infection in being pregnant: classes from the COVID-19 pandemic. Nat. Commun. 13, 5038 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dashraath, P. et al. Monkeypox and being pregnant: forecasting the dangers. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2022.08.017 (2022).

  • Jamieson, D. J., Jernigan, D. B., Ellis, J. E. & Treadwell, T. A. Rising infections and being pregnant: West Nile virus, monkeypox, extreme acute respiratory syndrome, and bioterrorism. Clin. Perinatol. 32, 765–776 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seang, S. et al. Proof of human-to-dog transmission of monkeypox virus. Lancet 400, 658–659 (2022).

  • Grant, R., Nguyen, L. L. & Breban, R. Modelling human-to-human transmission of monkeypox. Bull. World Well being Organ. 98, 638–640 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • High quality, P. E., Jezek, Z., Seize, B. & Dixon, H. The transmission potential of monkeypox virus in human populations. Int. J. Epidemiol. 17, 643–650 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, Z. et al. Replica variety of monkeypox within the early stage of the 2022 multi-country outbreak. J. Journey Med. https://doi.org/10.1093/jtm/taac099 (2022).

  • Guzzetta, G. et al. Early estimates of monkeypox incubation interval, technology time, and copy quantity, Italy, Might-June 2022. Emerg. Infect. Dis. 28, 2078–2081 (2022).

  • Velavan, T. P. & Meyer, C. G. Monkeypox 2022 outbreak: an replace. Trop. Med. Int. Well being 27, 604–605 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • European Centre for Illness Prevention and Management. Epidemiological replace: monkeypox outbreak. https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-outbreak (2022).

  • Dye, C. & Kraemer, M. U. G. Investigating the monkeypox outbreak. BMJ 377, o1314 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Monkeypox is spreading amongst homosexual males worldwide. https://www.aidsmap.com/information/may-2022/monkeypox-spreading-among-gay-men-worldwide (2022).

  • Inigo Martinez, J. et al. Monkeypox outbreak predominantly affecting males who’ve intercourse with males, Madrid, Spain, 26 April to 16 June 2022. Euro Surveill. 27, 2200471 (2022).

  • Zachariou, M. Monkeypox: signs seen in London sexual well being clinics differ from earlier outbreaks, research finds. BMJ 378, o1659 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Vusirikala, A. et al. Epidemiology of early monkeypox virus transmission in sexual networks of homosexual and bisexual males, England, 2022. Emerg. Infect. Dis. 28, 2082–2086 (2022).

  • Ogoina, D. Sexual behaviours and medical course of human monkeypox in Spain. Lancet 400, 636–637 (2022).

  • Ferre, V. M. et al. Detection of monkeypox virus in anorectal swabs from asymptomatic males who’ve intercourse with males in a sexually transmitted an infection screening program in Paris, France. Ann. Intern. Med. https://doi.org/10.7326/M22-2183 (2022).

  • De Baetselier, I. et al. Retrospective detection of asymptomatic monkeypox virus infections amongst male sexual well being clinic attendees in Belgium. Nat. Med. https://doi.org/10.1038/s41591-022-02004-w (2022).

  • Spicknall, I. H. et al. Modeling the impression of sexual networks within the transmission of monkeypox virus amongst homosexual, bisexual, and different males who’ve intercourse with males – United States, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1131–1135 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sah, R. et al. Monkeypox and its doable sexual transmission: the place are we now with its proof? Pathogens 11, 924 (2022).

  • Heskin, J. et al. Transmission of monkeypox virus by way of sexual contact – a novel route of an infection. J. Infect. 85, 334–363 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaney, Ok. P. et al. Methods adopted by homosexual, bisexual, and different males who’ve intercourse with males to forestall monkeypox virus transmission – United States, August 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1126–1130 (2022).

  • Antinori, A. et al. Epidemiological, medical and virological traits of 4 instances of monkeypox assist transmission by way of sexual contact, Italy, Might 2022. Euro Surveill. 27, 2200421 (2022).

  • Kozlov, M. Monkeypox goes world: why scientists are on alert. Nature 606, 15–16 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thornhill, J. P. et al. Monkeypox virus an infection in people throughout 16 nations – April-June 2022. N. Engl. J. Med. 387, 679–691 (2022).

  • Tarin-Vicente, E. J. et al. Scientific presentation and virological evaluation of confirmed human monkeypox virus instances in Spain: a potential observational cohort research. Lancet 400, 681–689 (2022).

  • Joint ECDC-WHO Regional Workplace for Europe Monkeypox Surveillance Bulletin. https://monkeypoxreport.ecdc.europa.eu/ (2022).

  • Endo, A. et al. Heavy-tailed sexual contact networks and monkeypox epidemiology within the world outbreak, 2022. Science 378, 90–94 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guzzetta, G. et al. Early estimates on monkeypox incubation interval, technology time and copy quantity in Italy, Might-June 2022. Emerg. Infect. Dis. 28, 2078–2081 (2022).

  • Yuan, P. et al. Assessing transmission dangers and management technique for monkeypox as an rising zoonosis in a metropolitan space. J. Med. Virol. https://doi.org/10.1002/jmv.28137 (2022).

  • Bragazzi, N. L. et al. Epidemiological developments and medical options of the continued monkeypox epidemic: a preliminary pooled knowledge evaluation and literature evaluate. J. Med. Virol. https://doi.org/10.1002/jmv.27931 (2022).

  • Vaughan, A. M. et al. A big multi-country outbreak of monkeypox throughout 41 nations within the WHO European Area, 7 March to 23 August 2022. Euro Surveill. 27, 2200620 (2022).

  • Graham, F. Each day briefing: how monkeypox is perhaps spreading in sexual networks. Nature https://doi.org/10.1038/d41586-022-01726-8 (2022).

  • Zhu, F., Li, L. & Che, D. Monkeypox virus below COVID-19: warning for sexual transmission – correspondence. Int J. Surg. 104, 106768 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Morales, A. J. & Lopardo, G. Monkeypox: one other sexually transmitted an infection? Pathogens. 11, 713 (2022).

  • Brockmeyer, N. H. As monkeypox goes sexual: a public well being perspective. J. Eur. Acad. Dermatol. Venereol. 36, 1164–1166 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alpalhao, M. et al. Monkeypox: a brand new (sexually transmissible) epidemic? J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/jdv.18424 (2022).

  • Laurence, J. The current rise in sexually transmitted infections in the US was a harbinger of the brand new monkeypox pandemic. AIDS Affected person Care STDS 36, 333–335 (2022).

  • Curran, Ok. G. et al. HIV and sexually transmitted infections amongst individuals with monkeypox – eight U.S. jurisdictions, Might 17-July 22, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1141–1147 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, A. L., Irausquin, S. & Friedman, R. The evolutionary biology of poxviruses. Infect. Genet. Evol. 10, 50–59 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackett, M. & Archard, L. C. Conservation and variation in orthopoxvirus genome construction. J. Gen. Virol. 45, 683–701 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buller, R. M. & Palumbo, G. J. Poxvirus pathogenesis. Microbiol. Rev. 55, 80–122 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shchelkunov, S. N. et al. Evaluation of the monkeypox virus genome. Virology 297, 172–194 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandenbogaert, M. et al. Nanopore sequencing of a monkeypox virus pressure remoted from a pustular lesion within the Central African Republic. Sci. Rep. 12, 10768 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendrickson, R. C., Wang, C., Hatcher, E. L. & Lefkowitz, E. J. Orthopoxvirus genome evolution: the function of gene loss. Viruses 2, 1933–1967 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kugelman, J. R. et al. Genomic variability of monkeypox virus amongst people, Democratic Republic of the Congo. Emerg. Infect. Dis. 20, 232–239 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barry, M., Wasilenko, S. T., Stewart, T. L. & Taylor, J. M. Apoptosis regulator genes encoded by poxviruses. Prog. Mol. Subcell. Biol. 36, 19–37 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seet, B. T. et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 21, 377–423 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteban, D. J. & Hutchinson, A. P. Genes within the terminal areas of orthopoxvirus genomes expertise adaptive molecular evolution. BMC Genomics. 12, 261 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elde, N. C. et al. Poxviruses deploy genomic accordions to adapt quickly towards host antiviral defenses. Cell 150, 831–841 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Challberg, M. D. & Englund, P. T. Purification and properties of the deoxyribonucleic acid polymerase induced by vaccinia virus. J. Biol. Chem. 254, 7812–7819 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Firth, C. et al. Utilizing time-structured knowledge to estimate evolutionary charges of double-stranded DNA viruses. Mol. Biol. Evol. 27, 2038–2051 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Toole, A. & Rambaut, Á. Preliminary observations about putative APOBEC3 deaminase modifying driving short-term evolution of MPXV since 2017. https://virological.org/t/initial-observations-about-putative-apobec3-deaminase-editing-driving-short-term-evolution-of-mpxv-since-2017/830 (2022).

  • Pecori, R., Di Giorgio, S., Paulo Lorenzo, J. & Nina Papavasiliou, F. Capabilities and penalties of AID/APOBEC-mediated DNA and RNA deamination. Nat. Rev. Genet. 23, 505–518 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeghpour, S. et al. Human APOBEC3 variations and viral an infection. Viruses. 13, 1366 (2021).

  • Martinez, T., Shapiro, M., Bhaduri-McIntosh, S. & MacCarthy, T. Evolutionary results of the AID/APOBEC household of mutagenic enzymes on human gamma-herpesviruses. Virus Evol. 5, vey040 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jern, P., Russell, R. A., Pathak, V. Ok. & Coffin, J. M. Possible function of APOBEC3G-mediated G-to-A mutations in HIV-1 evolution and drug resistance. PLoS Pathog. 5, e1000367 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kremer, M. et al. Vaccinia virus replication isn’t affected by APOBEC3 members of the family. Virol. J. 3, 86 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J. Med. Virol. https://doi.org/10.1002/jmv.28036 (2022).

  • Moss, B. Poxvirus entry and membrane fusion. Virology 344, 48–54 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moss, B. Membrane fusion throughout poxvirus entry. Semin. Cell Dev. Biol. 60, 89–96 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, G. L., Vanderplasschen, A. & Regulation, M. The formation and performance of extracellular enveloped vaccinia virus. J. Gen. Virol. 83, 2915–2931 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, F. I., Bleck, C. Ok. & Mercer, J. Poxvirus host cell entry. Curr. Opin. Virol. 2, 20–27 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Locker, J. Ok. et al. Entry of the 2 infectious types of vaccinia virus on the plasma membane is signaling-dependent for the IMV however not the EEV. Mol. Biol. Cell 11, 2497–2511 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanderplasschen, A., Hollinshead, M. & Smith, G. L. Intracellular and extracellular vaccinia virions enter cells by completely different mechanisms. J. Gen. Virol. 79(Pt. 4), 877–887 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanderplasschen, A. & Smith, G. L. A novel virus binding assay utilizing confocal microscopy: demonstration that the intracellular and extracellular vaccinia virions bind to completely different mobile receptors. J. Virol. 71, 4032–4041 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manes, N. P. et al. Comparative proteomics of human monkeypox and vaccinia intracellular mature and extracellular enveloped virions. J. Proteome Res. 7, 960–968 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, G. L. & Regulation, M. The exit of vaccinia virus from contaminated cells. Virus Res. 106, 189–197 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moss, B. Poxvirus cell entry: what number of proteins does it take? Viruses 4, 688–707 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, W. L. et al. Vaccinia virus 4c (A26L) protein on intracellular mature virus binds to the extracellular mobile matrix laminin. J. Virol. 81, 2149–2157 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matho, M. H. et al. Construction-function characterization of three human antibodies focusing on the vaccinia virus adhesion molecule D8. J. Biol. Chem. 293, 390–401 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsiao, J. C., Chung, C. S. & Chang, W. Vaccinia virus envelope D8L protein binds to cell floor chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J. Virol. 73, 8750–8761 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, C. S., Hsiao, J. C., Chang, Y. S. & Chang, W. A27L protein mediates vaccinia virus interplay with cell floor heparan sulfate. J. Virol. 72, 1577–1585 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berhanu, A. et al. Vaccination of BALB/c mice with Escherichia coli-expressed vaccinia virus proteins A27L, B5R, and D8L protects mice from deadly vaccinia virus problem. J. Virol. 82, 3517–3529 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blasco, R., Sisler, J. R. & Moss, B. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: impact of some extent mutation within the lectin homology area of the A34R gene. J. Virol. 67, 3319–3325 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thirunavukarasu, P. et al. A rationally designed A34R mutant oncolytic poxvirus: improved efficacy in peritoneal carcinomatosis. Mol. Ther. 21, 1024–1033 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolffe, E. J., Katz, E., Weisberg, A. & Moss, B. The A34R glycoprotein gene is required for induction of specialised actin-containing microvilli and environment friendly cell-to-cell transmission of vaccinia virus. J. Virol. 71, 3904–3915 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McIntosh, A. A. & Smith, G. L. Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J. Virol. 70, 272–281 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, C. L., Chung, C. S., Heine, H. G. & Chang, W. Vaccinia virus envelope H3L protein binds to cell floor heparan sulfate and is essential for intracellular mature virion morphogenesis and virus an infection in vitro and in vivo. J. Virol. 74, 3353–3365 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, D. H. et al. Vaccinia virus H3L envelope protein is a significant goal of neutralizing antibodies in people and elicits safety towards deadly problem in mice. J. Virol. 79, 11724–11733 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Fonseca, F. G., Wolffe, E. J., Weisberg, A. & Moss, B. Results of deletion or stringent repression of the H3L envelope gene on vaccinia virus replication. J. Virol. 74, 7518–7528 (2000).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foo, C. H. et al. Vaccinia virus L1 binds to cell surfaces and blocks virus entry independently of glycosaminoglycans. Virology 385, 368–382 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Townsley, A. C., Senkevich, T. G. & Moss, B. Vaccinia virus A21 virion membrane protein is required for cell entry and fusion. J. Virol. 79, 9458–9469 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Townsley, A. C., Senkevich, T. G. & Moss, B. The product of the vaccinia virus L5R gene is a fourth membrane protein encoded by all poxviruses that’s required for cell entry and cell-cell fusion. J. Virol. 79, 10988–10998 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senkevich, T. G. & Moss, B. Vaccinia virus H2 protein is a vital part of a fancy concerned in virus entry and cell-cell fusion. J. Virol. 79, 4744–4754 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diesterbeck, U. S., Gittis, A. G., Garboczi, D. N. & Moss, B. The two.1 A construction of protein F9 and its comparability to L1, two parts of the conserved poxvirus entry-fusion advanced. Sci. Rep. 8, 16807 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laliberte, J. P., Weisberg, A. S. & Moss, B. The membrane fusion step of vaccinia virus entry is cooperatively mediated by a number of viral proteins and host cell parts. PLoS Pathog. 7, e1002446 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bisht, H., Weisberg, A. S. & Moss, B. Vaccinia virus l1 protein is required for cell entry and membrane fusion. J. Virol. 82, 8687–8694 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, E., Senkevich, T. G. & Moss, B. Vaccinia virus F9 virion membrane protein is required for entry however not virus meeting, in distinction to the associated L1 protein. J. Virol. 80, 9455–9464 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFadden, G. Poxvirus tropism. Nat. Rev. Microbiol. 3, 201–213 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, C. F., Hubbs, A. E., Gunasinghe, S. Ok. & Oswald, B. W. A vaccinia virus late transcription issue copurifies with an element that binds to a viral late promoter and is complemented by extracts from uninfected HeLa cells. J. Virol. 72, 1446–1451 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanz, P. & Moss, B. A brand new vaccinia virus intermediate transcription issue. J. Virol. 72, 6880–6883 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosales, R., Sutter, G. & Moss, B. A mobile issue is required for transcription of vaccinia viral intermediate-stage genes. Proc. Natl Acad. Sci. USA 91, 3794–3798 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosales, R., Harris, N., Ahn, B. Y. & Moss, B. Purification and identification of a vaccinia virus-encoded intermediate stage promoter-specific transcription issue that has homology to eukaryotic transcription issue SII (TFIIS) and a further function as a viral RNA polymerase subunit. J. Biol. Chem. 269, 14260–14267 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts, Ok. L. & Smith, G. L. Vaccinia virus morphogenesis and dissemination. Tendencies Microbiol. 16, 472–479 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pauli, G. et al. Orthopox viruses: infections in people. Transfus. Med. Hemother. 37, 351–364 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nalca, A., Rimoin, A. W., Bavari, S. & Whitehouse, C. A. Reemergence of monkeypox: prevalence, diagnostics, and countermeasures. Clin. Infect. Dis. 41, 1765–1771 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Breman, J. G. et al. Human monkeypox, 1970-79. Bull. World Well being Organ. 58, 165–182 (1980).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahase, E. Monkeypox: what do we all know concerning the outbreaks in Europe and North America? BMJ 377, o1274 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Petersen, E. et al. Human monkeypox: epidemiologic and medical traits, prognosis, and prevention. Infect. Dis. Clin. North Am. 33, 1027–1043 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miura, F. et al. Estimated incubation interval for monkeypox instances confirmed within the Netherlands, Might 2022. Euro Surveill. 27, 2200448 (2022).

  • Charniga, Ok. et al. Estimating the incubation interval of monkeypox virus in the course of the 2022. Preprint at medRxiv https://doi.org/10.1101/2022.06.22.22276713 (2022).

  • WHO. Monkeypox (World Well being Group, 2022).

  • Cheema, A. Y. et al. Monkeypox: a evaluate of medical options, prognosis, and remedy. Cureus 14, e26756 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • PR Pittman et al. Scientific characterization of human monkeypox infections within the Democratic Republic of the Congo. medRxiv, (2022).

  • Benites-Zapata, V. A. et al. Scientific options, hospitalisation and deaths related to monkeypox: a scientific evaluate and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 21, 36 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCollum, A. M. & Damon, I. Ok. Human monkeypox. Clin. Infect. Dis. 58, 260–267 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Singhal, T., Kabra, S. Ok. & Lodha, R. Monkeypox: a evaluate. Indian J. Pediatr. 89, 955–960 (2022).

  • Saxena, S. Ok. et al. Re-emerging human monkeypox: a significant public-health debacle. J. Med. Virol. https://doi.org/10.1002/jmv.27902 (2022).

  • Patrocinio-Jesus, R. & Peruzzu, F. Monkeypox genital lesions. N. Engl. J. Med. 387, 66 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Portela-Dias, J., Sereno, S., Falcao-Reis, I. & Rasteiro, C. Monkeypox an infection with localized genital lesions in ladies. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2022.08.046 (2022).

  • Paparizos, V. et al. Monkeypox virus an infection: first reported case in Greece in a affected person with a genital rash. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/jdv.18521 (2022).

  • Hammerschlag, Y. et al. Monkeypox an infection presenting as genital rash, Australia, Might 2022. Euro Surveill. 27, 2200411 (2022).

  • Griffiths-Acha, J., Vela-Ganuza, M., Sarro-Fuente, C. & Lopez-Estebaranz, J. L. Monkeypox: a brand new differential prognosis when addressing genital ulcer illness. Br. J. Dermatol. https://doi.org/10.1111/bjd.21834 (2022).

  • Davido, B. et al. Monkeypox 2022 outbreak: instances with unique genital lesions. J. Journey Med. 29, taac077 (2022).

  • Bociaga-Jasik, M. et al. Monkeypox current with genital ulcers-challenging medical downside. Pol. Arch. Intern. Med. https://doi.org/10.20452/pamw.16304 (2022).

  • Girometti, N. et al. Demographic and medical traits of confirmed human monkeypox virus instances in people attending a sexual well being centre in London, UK: an observational evaluation. Lancet Infect. Dis. 28, 1321–1328 (2022).

  • Patel, A. et al. Scientific options and novel displays of human monkeypox in a central London centre in the course of the 2022 outbreak: descriptive case sequence. BMJ 378, e072410 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasi, J. Studies of asymptomatic monkeypox recommend that, on the very least, some infections go unnoticed. JAMA 328, 1023–1025 (2022).

  • Perez Duque, M. et al. Ongoing monkeypox virus outbreak, Portugal, 29 April to 23 Might 2022. Euro Surveill. 27, 2200424 (2022).

  • Adalja, A. & Inglesby, T. A novel worldwide monkeypox outbreak. Ann. Intern. Med. 175, 1175–1176 (2022).

  • Kumbhar, N. & Agarwala, P. The lurking menace of monkeypox in present instances. Indian J. Med. Microbiol. https://doi.org/10.1016/j.ijmmb.2022.07.016 (2022).

  • Kindrachuk, J. et al. Techniques kinomics demonstrates Congo Basin monkeypox virus an infection selectively modulates host cell signaling responses as in comparison with West African monkeypox virus. Mol. Cell. Proteomics https://doi.org/10.1074/mcp.M111.015701 (2012).

  • Li, Y. et al. Actual-time PCR assays for the precise detection of monkeypox virus West African and Congo Basin pressure DNA. J. Virol. Strategies 169, 223–227 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • See, Ok. C. Vaccination for monkeypox virus an infection in people: a evaluate of key concerns. Vaccines 10, 1342 (2022).

  • WHO. Laboratory testing for the monkeypox virus: Interim steering. https://www.who.int/publications/i/merchandise/WHO-MPX-laboratory-2022.1 (2022).

  • Ropp, S. L. et al. PCR technique for identification and differentiation of small pox and different orthopoxviruses. J. Clin. Microbiol. 33, 2069–2076 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, H., Ropp, S. L. & Esposito, J. J. Gene for A-type inclusion physique protein is helpful for a polymerase chain response assay to distinguish orthopoxviruses. J. Virol. Strategies 64, 217–221 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neubauer, H. et al. Particular detection of monkeypox virus by polymerase chain response. J. Virol. Strategies 74, 201–207 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loparev, V. N., Massung, R. F., Esposito, J. J. & Meyer, H. Detection and differentiation of outdated world orthopoxviruses: restriction fragment size polymorphism of the crmB gene area. J. Clin. Microbiol. 39, 94–100 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Detection of monkeypox virus with real-time PCR assays. J. Clin. Virol. 36, 194–203 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shchelkunov, S. N., Shcherbakov, D. N., Maksyutov, R. A. & Gavrilova, E. V. Species-specific identification of variola, monkeypox, cowpox, and vaccinia viruses by multiplex real-time PCR assay. J. Virol. Strategies 175, 163–169 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peiro-Mestres, A. et al. Frequent detection of monkeypox virus DNA in saliva, semen, and different medical samples from 12 sufferers, Barcelona, Spain, Might to June 2022. Euro Surveill. 27, 2200503 (2022).

  • Orba, Y. et al. Orthopoxvirus an infection amongst wildlife in Zambia. J. Gen. Virol. 96, 390–394 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulesh, D. A. et al. Monkeypox virus detection in rodents utilizing real-time 3’-minor groove binder TaqMan assays on the Roche LightCycler. Lab. Make investments. 84, 1200–1208 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davi, S. D. et al. Recombinase polymerase amplification assay for speedy detection of Monkeypox virus. Diagn. Microbiol. Infect. Dis. 95, 41–45 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Z. et al. Laboratory diagnostics for monkeypox: an summary of sensitivities from varied printed assessments. Journey Med. Infect. Dis. 49, 102425 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maksyutov, R. A., Gavrilova, E. V. & Shchelkunov, S. N. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay. J. Virol. Strategies 236, 215–220 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norz, D. et al. Fast adaptation of established high-throughput molecular testing infrastructure for monkeypox virus detection. Emerg. Infect. Dis. 28, 1765–1769 (2022).

  • Scaramozzino, N. et al. Actual-time PCR to determine variola virus or different human pathogenic orthopox viruses. Clin. Chem. 53, 606–613 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulaeto, D. O., Dunning, J. & Carroll, M. W. Evolutionary implications of human transmission of monkeypox: the significance of sequencing a number of lesions. Lancet Microbe 3, e639–e640 (2022).

  • Iizuka, I. et al. Loop-mediated isothermal amplification-based diagnostic assay for monkeypox virus infections. J. Med. Virol. 81, 1102–1108 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dumont, C. et al. Easy method for in subject samples assortment within the instances of pores and skin rash sickness and subsequent PCR detection of orthopoxviruses and varicella zoster virus. PLoS ONE 9, e96930 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammarlund, E. et al. A number of diagnostic strategies determine beforehand vaccinated people with protecting immunity towards monkeypox. Nat. Med. 11, 1005–1011 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubois, M. E., Hammarlund, E. & Slifka, M. Ok. Optimization of peptide-based ELISA for serological diagnostics: a retrospective research of human monkeypox an infection. Vector Borne Zoonotic Dis. 12, 400–409 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez de Marco Mdel, M. et al. The extremely virulent variola and monkeypox viruses specific secreted inhibitors of kind I interferon. FASEB J. 24, 1479–1488 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sejvar, J. J. et al. Human monkeypox an infection: a household cluster within the midwestern United States. J. Infect. Dis. 190, 1833–1840 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Karem, Ok. L. et al. characterization of acute-phase humoral immunity to monkeypox: use of immunoglobulin M enzyme-linked immunosorbent assay for detection of monkeypox an infection in the course of the 2003 North American outbreak. Clin. Diagn. Lab. Immunol. 12, 867–872 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stagles, M. J. et al. The histopathology and electron microscopy of a human monkeypox lesion. Trans. R. Soc. Trop. Med. Hyg. 79, 192–202 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherwat, A., Brooks, J. T., Birnkrant, D. & Kim, P. Tecovirimat and the remedy of monkeypox – previous, current, and future concerns. N. Engl. J. Med. 387, 579–581 (2022).

  • Rizk, J. G. et al. Prevention and remedy of monkeypox. Medicine 82, 957–963 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Shea, J. et al. Interim steering for prevention and remedy of monkeypox in individuals with HIV an infection – United States, August 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1023–1028 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goyal, L., Ajmera, Ok., Pandit, R. & Pandit, T. Prevention and remedy of monkeypox: a step-by-step information for healthcare professionals and basic inhabitants. Cureus 14, e28230 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai, A. N. et al. Compassionate use of tecovirimat for the remedy of monkeypox an infection. JAMA 328, 1348–1350 (2022).

  • Yang, G. et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from deadly orthopoxvirus problem. J. Virol. 79, 13139–13149 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordan, R. et al. ST-246 antiviral efficacy in a nonhuman primate monkeypox mannequin: willpower of the minimal efficient dose and human dose justification. Antimicrob. Brokers Chemother. 53, 1817–1822 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabanov, A. S. et al. A comparative research of the antiviral exercise of chemical compounds in regards to the orthopoxviruses experiments in vivo. Vopr. Virusol. 58, 39–43 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, S. Ok. et al. In vitro efficacy of ST246 towards smallpox and monkeypox. Antimicrob. Brokers Chemother. 53, 1007–1012 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolken, T. C. & Hruby, D. E. Tecovirimat for smallpox infections. Medicine Right now 46, 109–117 (2010).

    Article 
    CAS 

    Google Scholar
     

  • De Clercq, E. Historic views within the improvement of antiviral brokers towards poxviruses. Viruses 2, 1322–1339 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blasco, R. & Moss, B. Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J. Virol. 65, 5910–5920 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vliegen, I. et al. Deletion of the vaccinia virus F13L gene leads to a extremely attenuated virus that mounts a protecting immune response towards subsequent vaccinia virus problem. Antivir. Res. 93, 160–166 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duraffour, S. et al. ST-246 is a key antiviral to inhibit the viral F13L phospholipase, one of many important proteins for orthopoxvirus wrapping. J. Antimicrob. Chemother. 70, 1367–1380 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frenois-Veyrat, G. et al. Tecovirimat is very environment friendly on the Monkeypox virus lineage accountable for the worldwide 2022 outbreak. Preprint at bioRxiv https://doi.org/10.1101/2022.07.19.500484 (2022).

  • Sbrana, E. et al. Efficacy of the antipoxvirus compound ST-246 for remedy of extreme orthopoxvirus an infection. Am. J. Trop. Med. Hyg. 76, 768–773 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quenelle, D. C. et al. Efficacy of delayed remedy with ST-246 given orally towards systemic orthopoxvirus infections in mice. Antimicrob. Brokers Chemother. 51, 689–695 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russo, A. T. et al. Results of remedy delay on efficacy of tecovirimat following deadly aerosol monkeypox virus problem in cynomolgus macaques. J. Infect. Dis. 218, 1490–1499 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaune, D. & Iseni, F. Drug improvement towards smallpox: current and future. Antimicrob. Brokers Chemother. 64, e01683-19 (2020).

  • Laudisoit, A., Tepage, F. & Colebunders, R. Oral tecovirimat for the remedy of smallpox. N. Engl. J. Med. 379, 2084–2085 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Grosenbach, D. W. et al. Oral tecovirimat for the remedy of smallpox. N. Engl. J. Med. 379, 44–53 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huggins, J. et al. Nonhuman primates are protected against smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Brokers Chemother. 53, 2620–2625 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. Ok. et al. Efficient antiviral remedy of systemic orthopoxvirus illness: ST-246 remedy of prairie canines contaminated with monkeypox virus. J. Virol. 85, 9176–9187 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berhanu, A. et al. Therapy with the smallpox antiviral tecovirimat (ST-246) alone or together with ACAM2000 vaccination is efficient as a postsymptomatic remedy for monkeypox virus an infection. Antimicrob. Brokers Chemother. 59, 4296–4300 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Results of adjuvants on the immunogenicity and efficacy of a zika virus envelope area III subunit vaccine. Vaccines 7, 161 (2019).

  • Adler, H. et al. Scientific options and administration of human monkeypox: a retrospective observational research within the UK. Lancet Infect. Dis. 22, 1153–1162 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, S. M., Hill, N. B. & Halepas, S. Oral manifestations of monkeypox: a report of two instances. J. Oral Maxillofac. Surg. https://doi.org/10.1016/j.joms.2022.07.147 (2022).

  • Matias, W. R. et al. Tecovirimat for the remedy of human monkeypox: an preliminary sequence from Massachusetts, United States. Open Discussion board Infect. Dis. 9, ofac377 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucar, J. et al. Monkeypox virus-associated extreme proctitis handled with oral tecovirimat: a report of two instances. Ann. Intern. Med. https://doi.org/10.7326/L22-0300 (2022).

  • CDC. Demographics of sufferers receiving TPOXX for remedy of monkeypox. https://www.cdc.gov/poxvirus/monkeypox/response/2022/demographics-TPOXX.html (2022).

  • Nakoune, E. & Olliaro, P. Waking as much as monkeypox. BMJ 377, o1321 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • FACT SHEET: Ongoing U.S. monkeypox analysis actions to hurry science for impression. https://www.whitehouse.gov/ostp/news-updates/2022/08/11/fact-sheet-ongoing-u-s-monkeypox-research-activities-to-speed-science-for-impact/ (2022).

  • Del Rio, C. & Malani, P. N. Replace on the monkeypox outbreak. JAMA 328, 921–922 (2022).

  • Harris, E. World monkeypox outbreaks spur drug analysis for the uncared for illness. JAMA 328, 231–233 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • De Clercq, E. Cidofovir within the remedy of poxvirus infections. Antivir. Res. 55, 1–13 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Cidofovir accredited. PI Perspect 14–15 (1996).

  • FDA panel unanimously recommends approval of Vistide for CMV retinitis. Meals and Drug Administration. J. Int. Assoc. Physicians AIDS Care. 2, 50 (1996).

  • FDA grants advertising and marketing clearance of Vistide for the remedy of CMV retinitis. AIDS Affected person Care STDS. 10, 383–384 (1996).

  • Hostetler, Ok. Y. Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates improve oral antiviral exercise and cut back toxicity: present state-of-the-art. Antivir. Res. 82, A84–98 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magee, W. C., Hostetler, Ok. Y. & Evans, D. H. Mechanism of inhibition of vaccinia virus DNA polymerase by cidofovir diphosphate. Antimicrob. Brokers Chemother. 49, 3153–3162 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aldern, Ok. A., Ciesla, S. L., Winegarden, Ok. L. & Hostetler, Ok. Y. Elevated antiviral exercise of 1-O-hexadecyloxypropyl-[2-(14)C]cidofovir in MRC-5 human lung fibroblasts is defined by distinctive mobile uptake and metabolism. Mol. Pharmacol. 63, 678–681 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrei, G. & Snoeck, R. Cidofovir exercise towards poxvirus infections. Viruses 2, 2803–2830 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neyts, J., Leyssen, P., Verbeken, E. & De Clercq, E. Efficacy of cidofovir in a murine mannequin of disseminated progressive vaccinia. Antimicrob. Brokers Chemother. 48, 2267–2273 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smee, D. F. et al. Characterization of wild-type and cidofovir-resistant strains of camelpox, cowpox, monkeypox, and vaccinia viruses. Antimicrob. Brokers Chemother. 46, 1329–1335 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. & Raj, S. M. Efficacy of three key antiviral medicine used to deal with orthopoxvirus infections: a scientific evaluate. Glob. Biosecurity https://doi.org/10.31646/gbio.12 (2019).

  • Baker, R. O., Bray, M. & Huggins, J. W. Potential antiviral therapeutics for smallpox, monkeypox and different orthopoxvirus infections. Antivir. Res. 57, 13–23 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robbins, S. J. et al. The efficacy of cidofovir remedy of mice contaminated with ectromelia (mousepox) virus encoding interleukin-4. Antivir. Res. 66, 1–7 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quenelle, D. C., Collins, D. J. & Kern, E. R. Efficacy of multiple- or single-dose cidofovir towards vaccinia and cowpox virus infections in mice. Antimicrob. Brokers Chemother. 47, 3275–3280 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smee, D. F. et al. Differential pathogenesis of cowpox virus intranasal infections in mice induced by high and low inoculum volumes and results of cidofovir remedy. Int. J. Antimicrob. Brokers 31, 352–359 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stittelaar, Ok. J. et al. Antiviral remedy is simpler than smallpox vaccination upon deadly monkeypox virus an infection. Nature 439, 745–748 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meadows, Ok. P., Tyring, S. Ok., Pavia, A. T. & Rallis, T. M. Decision of recalcitrant molluscum contagiosum virus lesions in human immunodeficiency virus-infected sufferers handled with cidofovir. Arch. Dermatol. 133, 987–990 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, E. G., Thrasher, A., Lacey, Ok. & Harper, J. Topical cidofovir for extreme molluscum contagiosum. Lancet 353, 2042 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toro, J. R., Wooden, L. V., Patel, N. Ok. & Turner, M. L. Topical cidofovir: a novel remedy for recalcitrant molluscum contagiosum in youngsters contaminated with human immunodeficiency virus 1. Arch. Dermatol. 136, 983–985 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vora, S. et al. Extreme eczema vaccinatum in a family contact of a smallpox vaccinee. Clin. Infect. Dis. 46, 1555–1561 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Graef, S. et al. Clinicopathological findings in persistent corneal cowpox an infection. JAMA Ophthalmol. 131, 1089–1091 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Becker, C. et al. Cowpox virus an infection in pet rat homeowners: not at all times instantly acknowledged. Dtsch Arztebl Int. 106, 329–334 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cihlar, T. & Chen, M. S. Identification of enzymes catalyzing two-step phosphorylation of cidofovir and the impact of cytomegalovirus an infection on their actions in host cells. Mol. Pharmacol. 50, 1502–1510 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, X., Smith, J. L. & Chen, M. S. Impact of incorporation of cidofovir into DNA by human cytomegalovirus DNA polymerase on DNA elongation. Antimicrob. Brokers Chemother. 41, 594–599 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magee, W. C., Aldern, Ok. A., Hostetler, Ok. Y. & Evans, D. H. Cidofovir and (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine are extremely efficient inhibitors of vaccinia virus DNA polymerase when included into the template strand. Antimicrob Brokers Chemother. 52, 586–597 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinchington, P. R. et al. Sequence modifications within the human adenovirus kind 5 DNA polymerase related to resistance to the broad spectrum antiviral cidofovir. Antivir. Res. 56, 73–84 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, S. et al. Viral DNA polymerase mutations related to drug resistance in human cytomegalovirus. J. Infect. Dis. 188, 32–39 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Florescu, D. F. & Keck, M. A. Improvement of CMX001 (Brincidofovir) for the remedy of great illnesses or situations attributable to dsDNA viruses. Professional Rev. Antiinfect. Ther. 12, 1171–1178 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lanier, R. et al. Improvement of CMX001 for the remedy of poxvirus infections. Viruses 2, 2740–2762 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duraffour, S. et al. Emergence of cowpox: research of the virulence of medical strains and analysis of antivirals. PLoS ONE 8, e55808 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, S. et al. Analysis of illness and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox – an animal mannequin of smallpox. Antivir. Res. 94, 44–53 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice, A. D. et al. Efficacy of CMX001 as a prophylactic and presymptomatic antiviral agent in New Zealand white rabbits contaminated with rabbitpox virus, a mannequin for orthopoxvirus infections of people. Viruses 3, 63–82 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quenelle, D. C. et al. Oral remedy of cowpox and vaccinia virus infections in mice with ether lipid esters of cidofovir. Antimicrob. Brokers Chemother. 48, 404–412 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quenelle, D. C. & Kern, E. R. Therapy of vaccinia and cowpox virus infections in mice with CMX001 and ST-246. Viruses 2, 2681–2695 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, S. et al. Ectromelia virus infections of mice as a mannequin to assist the licensure of anti-orthopoxvirus therapeutics. Viruses 2, 1918–1932 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quenelle, D. C. et al. Efficacy of CMX001 towards herpes simplex virus infections in mice and correlations with drug distribution research. J. Infect. Dis. 202, 1492–1499 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parker, S. et al. Efficacy of therapeutic intervention with an oral ether-lipid analogue of cidofovir (CMX001) in a deadly mousepox mannequin. Antivir. Res. 77, 39–49 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stabenow, J. et al. A mouse mannequin of deadly an infection for evaluating prophylactics and therapeutics towards Monkeypox virus. J. Virol. 84, 3909–3920 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossi, I. M. et al. Efficacy of delayed brincidofovir remedy towards a deadly rabbitpox virus problem in New Zealand White rabbits. Antivir. Res. 143, 278–286 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trost, L. C. et al. The efficacy and pharmacokinetics of brincidofovir for the remedy of deadly rabbitpox virus an infection: a mannequin of smallpox illness. Antivir. Res. 117, 115–121 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, S. Y. et al. Experimental an infection of prairie canines with monkeypox virus. Emerg. Infect. Dis. 11, 539–545 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiner, Z. P. et al. Characterization of Monkeypox virus dissemination within the black-tailed prairie canine (Cynomys ludovicianus) by way of in vivo bioluminescent imaging. PLoS ONE 14, e0222612 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutson, C. L. et al. Pharmacokinetics and efficacy of a possible smallpox therapeutic, brincidofovir, in a deadly monkeypox virus animal mannequin. mSphere. 6, (2021).

  • Crump, R., Korom, M., Buller, R. M. & Parker, S. Buccal viral DNA as a set off for brincidofovir remedy within the mousepox mannequin of smallpox. Antivir. Res. 139, 112–116 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guarner, J., Del Rio, C. & Malani, P. N. Monkeypox in 2022-what clinicians have to know. JAMA 328, 139–140 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiwarkar, P. et al. Brincidofovir is very efficacious in controlling adenoviremia in pediatric recipients of hematopoietic cell transplant. Blood 129, 2033–2037 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice, A. D. et al. Efficacy of CMX001 as a submit publicity antiviral in New Zealand White rabbits contaminated with rabbitpox virus, a mannequin for orthopoxvirus infections of people. Viruses 3, 47–62 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudhindra, P. et al. Brincidofovir (CMX001) for the remedy of extreme adenoviral pneumonia in kidney transplant recipient. Cureus 11, e5296 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tippin, T. Ok., Morrison, M. E., Brundage, T. M. & Mommeja-Marin, H. Brincidofovir Is Not A Substrate For The Human Natural Anion Transporter 1: A Mechanistic Clarification For The Lack Of Nephrotoxicity Noticed In Scientific Research. Ther. Drug Monit. 38, 777–786 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olson, V. A. et al. In vitro efficacy of brincidofovir towards variola virus. Antimicrob. Brokers Chemother. 58, 5570–5571 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lederman, E. R. et al. Progressive vaccinia: case description and laboratory-guided remedy with vaccinia immune globulin, ST-246, and CMX001. J. Infect. Dis. 206, 1372–1385 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • FDA. Vaccinia IMMUNE GLOBULIN INTRAVENOUS (HUMan). https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/vaccinia-immune-globulin-intravenous-human (2018).

  • Wittek, R. Vaccinia immune globulin: present insurance policies, preparedness, and product security and efficacy. Int. J. Infect. Dis. 10, 193–201 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Whitehouse, E. R. et al. Novel remedy of a vaccinia virus an infection from an occupational needlestick – San Diego, California, 2019. MMWR Morb. Mortal. Wkly Rep. 68, 943–946 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindholm, D. A. et al. Preemptive tecovirimat use in an lively obligation service member who offered with acute myeloid leukemia after smallpox vaccination. Clin. Infect. Dis. 69, 2205–2207 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Facilities for Illness Management & Prevention. Human vaccinia an infection after contact with a raccoon rabies vaccine bait -Pennsylvania, 2009. MMWR Morb. Mortal. Wkly Rep. 58, 1204–1207 (2009).

  • Gilchuk, I. et al. Cross-neutralizing and protecting human antibody specificities to poxvirus infections. Cell 167, 684.e9–694.e9 (2016).

    Article 

    Google Scholar
     

  • Edghill-Smith, Y. et al. Smallpox vaccine-induced antibodies are obligatory and adequate for cover towards monkeypox virus. Nat. Med. 11, 740–747 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanford, M. M., McFadden, G., Karupiah, G. & Chaudhri, G. Immunopathogenesis of poxvirus infections: forecasting the upcoming storm. Immunol. Cell Biol. 85, 93–102 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ichihashi, Y. & Oie, M. Epitope mosaic on the floor proteins of orthopoxviruses. Virology 163, 133–144 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McConnell, S. et al. Safety of rhesus monkeys towards monkeypox by vaccinia virus immunization. Am. J. Vet. Res. 25, 192–195 (1964).

    CAS 
    PubMed 

    Google Scholar
     

  • Rao, A. Ok. et al. Use of JYNNEOS (smallpox and monkeypox vaccine, stay, nonreplicating) for preexposure vaccination of individuals in danger for occupational publicity to orthopoxviruses: Suggestions of the Advisory Committee on Immunization Practices – United States, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 734–742 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petersen, E. et al. Vaccination for monkeypox prevention in individuals with high-risk sexual behaviours to regulate on-going outbreak of monkeypox virus clade 3. Int. J. Infect. Dis. 122, 569–571 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kupferschmidt, Ok. Monkeypox vaccination plans take form amid questions. Science 376, 1142–1143 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozlov, M. Monkeypox vaccination begins – can the worldwide outbreaks be contained? Nature 606, 444–445 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, S. et al. Monkeypox vaccines and vaccination methods: Present data and advances. An replace – correspondence. Int. J. Surg, 105, 106869 (2022).

  • Brooks, J. T., Marks, P., Goldstein, R. H. & Walensky, R. P. Intradermal vaccination for monkeypox – advantages for particular person and public well being. N. Engl. J. Med. 387, 1151–1153 (2022).

  • Erratum: Use of JYNNEOS (smallpox and monkeypox vaccine, stay, nonreplicating) for preexposure vaccination of individuals in danger for occupational publicity to orthopoxviruses: Suggestions of the Advisory Committee on Immunization Practices – United States, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 886 (2022).

  • Jezek, Z. et al. Human monkeypox: a research of two,510 contacts of 214 sufferers. J. Infect. Dis. 154, 551–555 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rimoin, A. W. et al. Main enhance in human monkeypox incidence 30 years after smallpox vaccination campaigns stop within the Democratic Republic of Congo. Proc. Natl Acad. Sci. USA 107, 16262–16267 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenberg, R. N. & Kennedy, J. S. ACAM2000: a newly licensed cell culture-based stay vaccinia smallpox vaccine. Professional Opin. Investig. Medicine 17, 555–564 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nalca, A. & Zumbrun, E. E. ACAM2000: the brand new smallpox vaccine for United States strategic nationwide stockpile. Drug Des. Dev. Ther. 4, 71–79 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hatch, G. J. et al. Evaluation of the protecting impact of Imvamune and Acam2000 vaccines towards aerosolized monkeypox virus in cynomolgus macaques. J. Virol. 87, 7805–7815 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keckler, M. S. et al. IMVAMUNE((R)) and ACAM2000((R)) present completely different safety towards illness when administered postexposure in an intranasal monkeypox problem prairie canine mannequin. Vaccines 8, 396 (2020).

  • Russo, A. T. et al. Co-administration of tecovirimat and ACAM2000 in non-human primates: Impact of tecovirimat remedy on ACAM2000 immunogenicity and efficacy versus deadly monkeypox virus problem. Vaccine 38, 644–654 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reed, J. L., Scott, D. E. & Bray, M. Eczema vaccinatum. Clin. Infect. Dis. 54, 832–840 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Cassimatis, D. C. et al. Smallpox vaccination and myopericarditis: a medical evaluate. J. Am. Coll. Cardiol. 43, 1503–1510 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Halsell, J. S. et al. Myopericarditis following smallpox vaccination amongst vaccinia-naive US army personnel. JAMA 289, 3283–3289 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Bray, M. & Wright, M. E. Progressive vaccinia. Clin. Infect. Dis. 36, 766–774 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Decker, M. D. et al. Enhanced security surveillance research of ACAM2000 smallpox vaccine amongst US army service members. Vaccine 39, 5541–5547 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Faix, D. J. et al. Potential security surveillance research of ACAM2000 smallpox vaccine in deploying army personnel. Vaccine 38, 7323–7330 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Freeman, R. & Lenz, B. Cutaneous reactions related to ACAM2000 smallpox vaccination in a deploying U.S. Military unit. Mil. Med. 180, e152–156 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • McNeil, M. M. et al. Ischemic cardiac occasions and different adversarial occasions following ACAM2000((R)) smallpox vaccine within the Vaccine Antagonistic Occasion Reporting System. Vaccine 32, 4758–4765 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beachkofsky, T. M. et al. Antagonistic occasions following smallpox vaccination with ACAM2000 in a army inhabitants. Arch. Dermatol. 146, 656–661 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • CDC. Monkeypox. https://www.cdc.gov/poxvirus/monkeypox/vaccines.html (2022).

  • FDA. FDA approves first stay, non-replicating vaccine to forestall smallpox and monkeypox. https://www.fda.gov/news-events/press-announcements/fda-approves-first-live-non-replicating-vaccine-prevent-smallpox-and-monkeypox (2019).

  • Frey, S. E. et al. Security and immunogenicity of IMVAMUNE(R) smallpox vaccine utilizing completely different methods for a submit occasion state of affairs. Vaccine 31, 3025–3033 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, S. R. et al. Security and immunogenicity of modified vaccinia Ankara in hematopoietic stem cell transplant recipients: a randomized, managed trial. J. Infect. Dis. 207, 1888–1897 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Sonnenburg, F. et al. Security and immunogenicity of modified vaccinia Ankara as a smallpox vaccine in folks with atopic dermatitis. Vaccine 32, 5696–5702 (2014).

    Article 

    Google Scholar
     

  • Overton, E. T. et al. Security and immunogenicity of modified vaccinia Ankara-Bavarian Nordic smallpox vaccine in vaccinia-naive and skilled human immunodeficiency virus-infected people: an open-label, managed medical part II trial. Open Discussion board Infect. Dis. 2, ofv040 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenberg, R. N. et al. Security, immunogenicity, and surrogate markers of medical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected topics. J. Infect. Dis. 207, 749–758 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, T. IMVAMUNE, an attenuated modified vaccinia Ankara virus vaccine for smallpox an infection. Curr. Opin. Mol. Ther. 10, 407–417 (2008).

    PubMed 

    Google Scholar
     

  • Davies, D. H. et al. Antibody profiling by proteome microarray reveals the immunogenicity of the attenuated smallpox vaccine modified vaccinia virus ankara is corresponding to that of Dryvax. J. Virol. 82, 652–663 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phelps, A. L. et al. Comparative efficacy of modified vaccinia Ankara (MVA) as a possible alternative smallpox vaccine. Vaccine 25, 34–42 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cosma, A. et al. Analysis of modified vaccinia virus Ankara instead vaccine towards smallpox in chronically HIV kind 1-infected people present process HAART. AIDS Res. Hum. Retroviruses 23, 782–793 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meseda, C. A. et al. Enhanced immunogenicity and protecting impact conferred by vaccination with combos of modified vaccinia virus Ankara and licensed smallpox vaccine Dryvax in a mouse mannequin. Virology 339, 164–175 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Krempelhuber, A. et al. A randomized, double-blind, dose-finding Section II research to guage immunogenicity and security of the third technology smallpox vaccine candidate IMVAMUNE. Vaccine 28, 1209–1216 (2010).

    Article 

    Google Scholar
     

  • Frey, S. E. et al. Scientific and immunologic responses to a number of doses of IMVAMUNE (Modified Vaccinia Ankara) adopted by Dryvax problem. Vaccine 25, 8562–8573 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vollmar, J. et al. Security and immunogenicity of IMVAMUNE, a promising candidate as a 3rd technology smallpox vaccine. Vaccine 24, 2065–2070 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bavarian-Nordic.com. Bavarian Nordic broadcasts US FDA approval of Jynneos s (smallpox and monkeypox vaccine, stay; non-replicating) for prevention of smallpox and monkeypox illness in adults. https://www.bavarian-nordic.com/investor/information/information.aspx?information=5758 (2019).

  • Earl, P. L. et al. Fast safety in a monkeypox mannequin by a single injection of a replication-deficient vaccinia virus. Proc. Natl Acad. Sci. USA 105, 10889–10894 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keckler, M. S. et al. Institution of the black-tailed prairie canine (Cynomys ludovicianus) as a novel animal mannequin for evaluating smallpox vaccines administered preexposure in each high- and low-dose monkeypox virus challenges. J. Virol. 85, 7683–7698 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stittelaar, Ok. J. et al. Modified vaccinia virus Ankara protects macaques towards respiratory problem with monkeypox virus. J. Virol. 79, 7845–7851 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Earl, P. L. et al. Immunogenicity of a extremely attenuated MVA smallpox vaccine and safety towards monkeypox. Nature 428, 182–185 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nigam, P. et al. DNA/MVA HIV-1/AIDS vaccine elicits long-lived vaccinia virus-specific immunity and confers safety towards a deadly monkeypox problem. Virology 366, 73–83 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen, B. W. et al. Vaccinating towards monkeypox within the Democratic Republic of the Congo. Antivir. Res. 162, 171–177 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, L. B. L. et al. A potential nationwide cohort evaluating ring MVA vaccination as post-exposure prophylaxis for monkeypox. Nat. Med. https://doi.org/10.1038/d41591-022-00077-1 (2022).

  • Pittman, P. R. et al. Section 3 efficacy trial of modified vaccinia Ankara as a vaccine towards smallpox. N. Engl. J. Med. 381, 1897–1908 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Nicolas-Ruanes, B. et al. Monkeypox virus case with maculopapular exanthem and proctitis in the course of the Spanish outbreak in 2022. J. Eur. Acad. Dermatol. Venereol. 36, e658–e660 (2022).

    PubMed 

    Google Scholar
     

  • WHO. Vaccines and immunization for monkeypox: Interim steering, 14 June 2022. https://www.who.int/publications/i/merchandise/who-mpx-immunization-2022.1 (2022).

  • EMA. EMA recommends approval of Imvanex for the prevention of monkeypox illness. https://www.ema.europa.eu/en/information/ema-recommends-approval-imvanex-prevention-monkeypox-disease

  • GlobeNewswire. Well being Canada extends approval of IMVAMUNE to immunization towards monkeypox and orthopox viruses. https://www.globenewswire.com/news-release/2020/11/12/2125193/0/en/Well being-Canada-Extends-Approval-of-IMVAMUNE-to-Immunization-against-Monkeypox-and-Orthopox-Viruses.html (2020).

  • GlobeNewswire. Bavarian Nordic expands capability with U.S. contract producer for filling of smallpox/monkeypox vaccines. https://www.globenewswire.com/en/news-release/2022/08/18/2501182/0/en/Bavarian-Nordic-Expands-Capability-with-U-S-Contract-Producer-for-Filling-of-Smallpox-Monkeypox-Vaccines.html (2022).

  • FDA. Monkeypox replace: FDA authorizes emergency use of JYNNEOS vaccine to extend vaccine provide. https://www.fda.gov/news-events/press-announcements/monkeypox-update-fda-authorizes-emergency-use-jynneos-vaccine-increase-vaccine-supply (2022).

  • Frey, S. E. et al. Comparability of lyophilized versus liquid modified vaccinia Ankara (MVA) formulations and subcutaneous versus intradermal routes of administration in wholesome vaccinia-naive topics. Vaccine 33, 5225–5234 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi-Nishimaki, F. et al. Genetic evaluation of vaccinia virus Lister pressure and its attenuated mutant LC16m8: manufacturing of intermediate variants by homologous recombination. J. Gen. Virol. 68, 2705–2710 (1987). Pt 10.

    Article 
    PubMed 

    Google Scholar
     

  • Morikawa, S. et al. An attenuated LC16m8 smallpox vaccine: evaluation of full-genome sequence and induction of immune safety. J. Virol. 79, 11873–11891 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshikawa, T. et al. Building and characterization of bacterial synthetic chromosomes harboring the full-length genome of a extremely attenuated vaccinia virus LC16m8. PLoS ONE 13, e0192725 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omura, N. et al. A novel system for setting up a recombinant highly-attenuated vaccinia virus pressure (LC16m8) expressing international genes and its software for the technology of LC16m8-based vaccines towards herpes simplex virus 2. Jpn J. Infect. Dis. 71, 229–233 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokote, H. et al. Security of attenuated smallpox vaccine LC16m8 in immunodeficient mice. Clin. Vaccin. Immunol. 21, 1261–1266 (2014).

    Article 

    Google Scholar
     

  • Meseda, C. A. et al. Comparative analysis of the immune responses and safety engendered by LC16m8 and Dryvax smallpox vaccines in a mouse mannequin. Clin. Vaccin. Immunol. 16, 1261–1271 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Empig, C. et al. Extremely attenuated smallpox vaccine protects rabbits and mice towards pathogenic orthopoxvirus problem. Vaccine 24, 3686–3694 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kidokoro, M., Tashiro, M. & Shida, H. Genetically secure and totally efficient smallpox vaccine pressure constructed from extremely attenuated vaccinia LC16m8. Proc. Natl Acad. Sci. USA 102, 4152–4157 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokote, H. et al. Vaccinia virus pressure LC16m8 faulty within the B5R gene retains robust safety corresponding to its parental pressure Lister in immunodeficient mice. Vaccine 33, 6112–6119 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saijo, M. et al. LC16m8, a extremely attenuated vaccinia virus vaccine missing expression of the membrane protein B5R, protects monkeys from monkeypox. J. Virol. 80, 5179–5188 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, S. N. et al. Smallpox vaccine security relies on T cells and never B cells. J. Infect. Dis. 203, 1043–1053 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iizuka, I. et al. A single vaccination of nonhuman primates with extremely attenuated smallpox vaccine, LC16m8, supplies long-term safety towards monkeypox. Jpn J. Infect. Dis. 70, 408–415 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kennedy, J. S. et al. Security and immunogenicity of LC16m8, an attenuated smallpox vaccine in vaccinia-naive adults. J. Infect. Dis. 204, 1395–1402 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito, T. et al. Scientific and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. JAMA 301, 1025–1033 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenner, J. et al. LC16m8: an attenuated smallpox vaccine. Vaccine 24, 7009–7022 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishiyama, Y. et al. Freeze-dried stay attenuated smallpox vaccine ready in cell tradition “LC16-KAKETSUKEN”: post-marketing surveillance research on security and efficacy compliant with good medical observe. Vaccine 33, 6120–6127 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eto, A. et al. Latest advances within the research of stay attenuated cell-cultured smallpox vaccine LC16m8. Vaccine 33, 6106–6111 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eto, A. et al. Profiling of the antibody response to attenuated LC16m8 smallpox vaccine utilizing protein array evaluation. Vaccine 37, 6588–6593 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman, D. Security and immunogenicity of LC16m8, an attenuated smallpox vaccine in vaccinia-naive adults. J. Infect. Dis. 206, 1149–1150 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, B. F. et al. Serological responses in people to the smallpox vaccine LC16m8. J. Gen. Virol. 92, 2405–2410 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Healthworld.com. Japan approves smallpox vaccine to forestall monkeypox. https://well being.economictimes.indiatimes.com/information/trade/japan-approves-smallpox-vaccine-to-prevent-monkeypox/93321404 (2022).

  • Ogoina, D. et al. The 2017 human monkeypox outbreak in Nigeria-Report of outbreak expertise and response within the Niger Delta College Educating Hospital, Bayelsa State, Nigeria. PLoS ONE 14, e0214229 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogoina, D. et al. Scientific course and end result of human monkeypox in Nigeria. Clin. Infect. Dis. 71, e210–e214 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • ABC NEWS. Moderna contemplating creating an mRNA monkeypox vaccine amid rising demand for pictures. https://abcnews.go.com/Well being/moderna-creating-mrna-monkeypox-vaccine-amid-growing-demand/story?id=87875414 (2022).

  • Tonix Prescription drugs, TNX-801. https://www.tonixpharma.com/tnx-801/ (2022).

  • Noyce, R. S., Lederman, S. & Evans, D. H. Building of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS ONE 13, e0188453 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noyce, R et al. Artificial chimeric horsepox virus (scHPXV) vaccination protects macaques from monkeypox. https://www.tonixpharma.com/wp-content/uploads/2021/11/Artificial-Chimeric-Horsepox-Virus-scHPXV-Vaccination-Protects-Macaques-from-Monkeypox.pdf (2020).

  • Gao, A. & Gao. S. In silico identification of non-cross-reactive epitopes for monkeypox cell surface-binding protein. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-1693979/v1 (2022).

  • Peng, C. & Moss, B. Restore of a beforehand uncharacterized second host-range gene contributes to full replication of modified vaccinia virus Ankara (MVA) in human cells. Proc. Natl Acad. Sci. USA 117, 3759–3767 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edghill-Smith, Y. et al. Smallpox vaccine doesn’t defend macaques with AIDS from a deadly monkeypox virus problem. J. Infect. Dis. 191, 372–381 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutson, C. L. et al. Monkeypox zoonotic associations: insights from laboratory analysis of animals related to the multi-state US outbreak. Am. J. Trop. Med. Hyg. 76, 757–768 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marennikova, S. S. & Seluhina, E. M. Susceptibility of some rodent species to monkeypox virus, and course of the an infection. Bull. World Well being Organ. 53, 13–20 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arita, I. & Henderson, D. A. Smallpox and monkeypox in non-human primates. Bull. World Well being Organ. 39, 277–283 (1968).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shelukhina, E. M., Shenkman, L. S., Rozina, E. E. & Marennikova, S. S. Doable mechanism of orthopoxvirus preservation in nature. Vopr. Virusol. 368–372 (1979).

  • Earl, P. L., Americo, J. L., Cotter, C. A. & Moss, B. Comparative stay bioluminescence imaging of monkeypox virus dissemination in a wild-derived inbred mouse (Mus musculus castaneus) and outbred African dormouse (Graphiurus kelleni). Virology 475, 150–158 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Americo, J. L., Moss, B. & Earl, P. L. Identification of wild-derived inbred mouse strains extremely prone to monkeypox virus an infection to be used as small animal fashions. J. Virol. 84, 8172–8180 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Earl, P. L., Americo, J. L. & Moss, B. Genetic research of the susceptibility of classical and wild-derived inbred mouse strains to monkeypox virus. Virology 481, 161–165 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jezek, Z. & Fenner, F. Human monkeypox. Monogr. Virol. 17, 1–140 (1988).

    Article 

    Google Scholar
     

  • Reynolds, M. G., Carroll, D. S. & Karem, Ok. L. Elements affecting the chance of monkeypox’s emergence and unfold within the post-smallpox period. Curr. Opin. Virol. 2, 335–343 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falendysz, E. A. et al. Additional evaluation of monkeypox virus an infection in gambian pouched rats (Cricetomys gambianus) utilizing in vivo bioluminescent imaging. PLoS Negl. Trop. Dis. 9, e0004130 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falendysz, E. A. et al. Analysis of monkeypox virus an infection of black-tailed prairie canines (Cynomys ludovicianus) utilizing in vivo bioluminescent imaging. J. Wildl. Dis. 50, 524–536 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marennikova, S. S., Shelukhina, E. M. & Zhukova, O. A. Experimental an infection of squirrels Sciurus vulgaris by monkey pox virus. Acta Virol. 33, 399 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Sergeev, A. A. et al. Utilizing the bottom squirrel (Marmota bobak) as an animal mannequin to evaluate monkeypox drug efficacy. Transbound. Emerg. Dis. 64, 226–236 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sbrana, E., Xiao, S. Y., Newman, P. C. & Tesh, R. B. Comparative pathology of North American and central African strains of monkeypox virus in a floor squirrel mannequin of the illness. Am. J. Trop. Med Hyg. 76, 155–164 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Reynolds, M. G. et al. A silent enzootic of an orthopoxvirus in Ghana, West Africa: proof for multi-species involvement within the absence of widespread human illness. Am. J. Trop. Med. Hyg. 82, 746–754 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khodakevich, L. et al. Monkeypox virus in relation to the ecological options surrounding human settlements in Bumba zone, Zaire. Trop. Geogr. Med. 39, 56–63 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Gispen, R., Model-Saathof, B. B. & Hekker, A. C. Monkeypox-specific antibodies in human and simian sera from the Ivory Coast and Nigeria. Bull. World Well being Organ. 53, 355–360 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mucker, E. M. et al. Susceptibility of marmosets (Callithrix jacchus) to monkeypox virus: a low dose potential mannequin for monkeypox and smallpox illness. PLoS ONE 10, e0131742 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breman, J. G. et al. Human poxvirus illness after smallpox eradication. Am. J. Trop. Med. Hyg. 26, 273–281 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arita, I. et al. Outbreaks of monkeypox and serological surveys in nonhuman primates. Bull. World Well being Organ. 46, 625–631 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauer, R. M. et al. Research on a pox illness of monkeys. I. Pathology. Am. J. Vet. Res. 21, 377–380 (1960).

    CAS 
    PubMed 

    Google Scholar
     

  • Breman, J. G., Bernadou, J. & Nakano, J. H. Poxvirus in West African nonhuman primates: serological survey outcomes. Bull. World Well being Organ. 55, 605–612 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, J. C. An epizootic of monkey pox at Rotterdam zoo. Int. Zoo. Yearb. 6, 274–275 (1966).

    Article 

    Google Scholar
     

  • Elizaga, M. L. et al. Potential surveillance for cardiac adversarial occasions in wholesome adults receiving modified vaccinia Ankara vaccines: a scientific evaluate. PLoS ONE 8, e54407 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overton, E. T. et al. A randomized part II trial to check security and immunogenicity of the MVA-BN smallpox vaccine at varied doses in adults with a historical past of AIDS. Vaccine 38, 2600–2607 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenberg, R. N. et al. A randomized, double-blind, placebo-controlled part II trial investigating the protection and immunogenicity of modified vaccinia ankara smallpox vaccine (MVA-BN(R)) in 56-80-year-old topics. PLoS ONE 11, e0157335 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overton, E. T. et al. Immunogenicity and security of three consecutive manufacturing plenty of the non replicating smallpox vaccine MVA: a randomised, double blind, placebo managed part III trial. PLoS ONE 13, e0195897 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zitzmann-Roth, E. M. et al. Cardiac security of modified vaccinia Ankara for vaccination towards smallpox in a younger, wholesome research inhabitants. PLoS ONE 10, e0122653 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seaman, M. S. et al. Impact of vaccination with modified vaccinia Ankara (ACAM3000) on subsequent problem with Dryvax. J. Infect. Dis. 201, 1353–1360 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wilck, M. B. et al. Security and immunogenicity of modified vaccinia Ankara (ACAM3000): impact of dose and route of administration. J. Infect. Dis. 201, 1361–1370 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang, H. C. et al. A randomized, double-blind, managed medical trial to guage the efficacy and security of CJ-50300, a newly developed cell culture-derived smallpox vaccine, in wholesome volunteers. Vaccine 28, 5845–5849 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frey, S. E. et al. Human antibody responses following vaccinia immunization utilizing protein microarrays and correlation with cell-mediated immunity and antibody-dependent mobile cytotoxicity responses. J. Infect. Dis. 224, 1372–1382 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments