Saturday, November 5, 2022
HomeMicrobiologyMicrobial neighborhood shifts induced by plastic and zinc as substitutes of tire...

Microbial neighborhood shifts induced by plastic and zinc as substitutes of tire abrasion


  • Hirai, H. et al. Natural micropollutants in marine plastics particles from the open ocean and distant and concrete seashores. Mar. Pollut. Bull. 62(8), 1683–1692. https://doi.org/10.1016/j.marpolbul.2011.06.004 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masó, M., Garcés, E., Pagès, F. & Camp, J. Drifting plastic particles as a possible vector for dispersing dangerous algal bloom (HAB) species. Sci. Mar. 67(1), 107–111. https://doi.org/10.3989/scimar.2003.67n1107 (2003).

    Article 

    Google Scholar
     

  • Pandey, D., Singh, A., Ramanathan, A. & Kumar, M. The mixed publicity of microplastics and poisonous contaminants within the floodplains of North India: A assessment. J. Environ. Manag. 279, 111557. https://doi.org/10.1016/j.jenvman.2020.111557 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Peng, L. et al. Micro- and nano-plastics in marine setting: Supply, distribution and threats—A assessment. Sci. Whole Environ. 698, 134254. https://doi.org/10.1016/j.scitotenv.2019.134254 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46(12), 6453–6454. https://doi.org/10.1021/es302011r (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rochman, C. M. & Hoellein, T. The worldwide odyssey of plastic air pollution. Science 368(6496), 1184–1185. https://doi.org/10.1126/science.abc4428 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jan Kole, P., Löhr, A. J., van Belleghem, F. G. A. J. & Ragas, A. M. J. Put on and tear of tyres: A stealthy supply of microplastics within the setting. Int. J. Environ. Res. Public Well being https://doi.org/10.3390/ijerph14101265 (2017).

    Article 

    Google Scholar
     

  • Sommer, F. et al. Tire abrasion as a significant supply of microplastics within the setting. Aerosol Air Qual. Res. 18(8), 2014–2028. https://doi.org/10.4209/aaqr.2018.03.0099 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Beita-Sandí, W., Selbes, M., Ersan, M. S. & Karanfil, T. Launch of nitrosamines and nitrosamine precursors from scrap tires. Environ. Sci. Technol. Lett. 6(4), 251–256. https://doi.org/10.1021/acs.estlett.9b00172 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kaminsky, W. & Mennerich, C. Pyrolysis of artificial tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black. J. Anal. Appl. Pyrolysis 58–59, 803–811. https://doi.org/10.1016/S0165-2370(00)00129-7 (2001).

    Article 

    Google Scholar
     

  • Sundt, P., Schulze, P. E. & Syversen, F. Sources of microplastic- air pollution to the marine setting. Mepex Nor. Environ. Company 86, 20 (2014).


    Google Scholar
     

  • White, W. C. Butadiene manufacturing course of overview. Chem. Biol. Work together. 166(1–3), 10–14. https://doi.org/10.1016/j.cbi.2007.01.009 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52(4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper, D. A. & Corcoran, P. L. Results of mechanical and chemical processes on the degradation of plastic seashore particles on the island of Kauai, Hawaii. Mar. Pollut. Bull. 60(5), 650–654. https://doi.org/10.1016/j.marpolbul.2009.12.026 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brine, T. & Thompson, R. C. Degradation of plastic service baggage within the marine setting. Mar. Pollut. Bull. 60(12), 2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music, Y. Okay. et al. Mixed results of UV publicity period and mechanical abrasion on microplastic fragmentation by polymer kind. Environ. Sci Technol. 51(8), 4368–4376. https://doi.org/10.1021/acs.est.6b06155 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Adobe Inc. (2019). Adobe illustrator. Retrieved from https://www.adobe.com/Merchandise/Illustrator.

  • Chamas, A. et al. Degradation charges of plastics within the setting. ACS Maintain. Chem. Eng. 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Councell, T. B., Duckenfield, Okay. U., Landa, E. R. & Callender, E. Tire-wear particles as a supply of zinc to the setting. Environ. Sci. Technol. 38(15), 4206–4214. https://doi.org/10.1021/es034631f (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Awet, T. T. et al. Results of polystyrene nanoparticles on the microbiota and practical variety of enzymes in soil. Environ. Sci. Eur. https://doi.org/10.1186/s12302-018-0140-6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, H., Son, Y., Yoon, T. Okay., Kim, S. & Kim, W. The impact of multi-walled carbon nanotubes on soil microbial exercise. Ecotoxicol. Environ. Saf. 74(4), 569–575. https://doi.org/10.1016/j.ecoenv.2011.01.004 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber, M., Welker, A. & Helmreich, B. Important assessment of heavy metallic air pollution of site visitors space runoff: Prevalence, influencing components, and partitioning. Sci. Whole Environ. 541, 895–919. https://doi.org/10.1016/j.scitotenv.2015.09.033 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. Catalytic pyrolysis of plastic waste: A assessment. Course of Saf. Environ. Prot. 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Li, H., Cao, Q., Jin, L. & Wang, F. Upgrading pyrolytic residue from waste tires to industrial carbon black. Waste Manag. Res. 36(5), 436–444. https://doi.org/10.1177/0734242X18764292 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, D., Li, G., Wang, H. T. & Duan, G. L. Results of nano- or microplastic publicity mixed with arsenic on soil bacterial, fungal, and protistan communities. Chemosphere 281, 130998. https://doi.org/10.1016/j.chemosphere.2021.130998 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathan, S. I. et al. Soil Air pollution from micro-and nanoplastic particles: A hidden and unknown biohazard. Sustainability 12(18), 1–31. https://doi.org/10.3390/su12187255 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rillig, M. C. & Bonkowski, M. Microplastic and soil protists: A name for analysis. Environ. Pollut. 241, 1128–1131. https://doi.org/10.1016/j.envpol.2018.04.147 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life within the “Plastisphere”: Microbial communities on plastic marine particles. Environ. Sci. Technol. 47(13), 7137–7146. https://doi.org/10.1021/es401288x (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burns, E. E. & Boxall, A. B. A. Microplastics within the aquatic setting: Proof for or in opposition to adversarial impacts and main information gaps. Environ. Toxicol. Chem. 37(11), 2776–2796. https://doi.org/10.1002/and so forth.4268 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradney, L. et al. Particulate plastics as a vector for poisonous trace-element uptake by aquatic and terrestrial organisms and human well being threat. Environ. Int. 2019(131), 104937. https://doi.org/10.1016/j.envint.2019.104937 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Duis, Okay. & Coors, A. Microplastics within the Aquatic and Terrestrial Surroundings: Sources (with a Particular Deal with Private Care Merchandise), destiny and results. Environ. Sci. Eur. 28(1), 1–25. https://doi.org/10.1186/s12302-015-0069-y (2016).

    Article 
    CAS 

    Google Scholar
     

  • Geyer, R., Jambeck, J. R. & Regulation, Okay. L. Manufacturing, use, and destiny of all plastics ever made. Sci. Adv. 3(7), 25–29. https://doi.org/10.1126/sciadv.1700782 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jayasiri, H. B., Purushothaman, C. S. & Vennila, A. Quantitative evaluation of plastic particles on leisure seashores in Mumbai, India. Mar. Pollut. Bull. 77(1–2), 107–112. https://doi.org/10.1016/j.marpolbul.2013.10.024 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lassen, C., Hansen, S. F., Magnusson, Okay., Hartmann, N. B., Rehne Jensen, P., Nielsen, T. G. & Brinch, A. Microplastics incidence, results and sources of releases (2015).

  • Weithmann, N. et al. Natural fertilizer as a car for the entry of microplastic into the setting. Sci. Adv. https://doi.org/10.1126/sciadv.aap8060 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics within the marine setting: A assessment of the strategies used for identification and quantification. Environ. Sci. Technol. 46(6), 3060–3075. https://doi.org/10.1021/es2031505 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boenigk, J., Matz, C., Jürgens, Okay. & Arndt, H. Complicated selective feeding with differential digestion in bacterivorous nanoflagellates. J. Eukaryot. Microbiol. 48(4), 425–432. https://doi.org/10.1111/j.1550-7408.2001.tb00175.x (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boenigk, J., Matz, C., Jürgens, Okay. & Arndt, H. Meals concentration-dependent regulation of meals selectivity of interception-feeding bacterivorous nanoflagellates. Aquat. Microb. Ecol. 27(2), 195–202. https://doi.org/10.3354/ame027195 (2002).

    Article 

    Google Scholar
     

  • Wright, S. L., Thompson, R. C. & Galloway, T. S. The bodily impacts of microplastics on marine organisms: A assessment. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, C. J. Artificial polymers within the marine setting: A quickly growing, long-term risk. Environ. Res. 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, S. F. et al. Publicity to polystyrene nanoplastic results in inhibition of anaerobic digestion system. Sci. Whole Environ. 625, 64–70. https://doi.org/10.1016/j.scitotenv.2017.12.158 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bock, C. et al. Elements shaping neighborhood patterns of protists and micro organism on a European scale. Environ. Microbiol. 22(6), 2243–2260. https://doi.org/10.1111/1462-2920.14992 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Besseling, E., Wang, B., Lürling, M. & Koelmans, A. A. Nanoplastic impacts progress of S. obliquus and copy of D. magna. Environ. Sci. Technol. 48(20), 12336–12343. https://doi.org/10.1021/es503001d (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. & Donaldson, Okay. Measurement-dependent proinflammatory results of ultrafine polystyrene particles: A job for floor space and oxidative stress within the enhanced exercise of ultrafines. Toxicol. Appl. Pharmacol. 175(3), 191–199. https://doi.org/10.1006/taap.2001.9240 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation within the monogonont rotifer (Brachionus Koreanus). Environ. Sci. Technol. 50(16), 8849–8857. https://doi.org/10.1021/acs.est.6b01441 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, Okay. H. Feeding by frequent heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in comparison with that of different suessioid dinoflagellates. Algae 34(2), 127–140. https://doi.org/10.4490/algae.2019.34.5.29 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S. & Vethaak, A. D. Do plastic particles have an effect on microalgal photosynthesis and progress?. Aquat. Toxicol. 170, 259–261. https://doi.org/10.1016/j.aquatox.2015.12.002 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, G., Barnoud, J. & Monticelli, L. Polystyrene nanoparticles perturb lipid membranes. J. Phys. Chem. Lett. 5(1), 241–246. https://doi.org/10.1021/jz402234c (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandts, I. et al. Results of nanoplastics on mytilus galloprovincialis after particular person and mixed publicity with carbamazepine. Sci. Whole Environ. 643, 775–784. https://doi.org/10.1016/j.scitotenv.2018.06.257 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciacci, C. et al. Nanoparticle-biological interactions in a marine benthic foraminifer. Sci. Rep. https://doi.org/10.1038/s41598-019-56037-2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. A. et al. Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano 7(9), 7483–7494 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Y. et al. Phytoplankton response to polystyrene microplastics: Perspective from a complete progress interval. Chemosphere https://doi.org/10.1016/j.chemosphere.2018.05.170 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Time resolved examine of cell loss of life mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5(22), 10868–10876. https://doi.org/10.1039/c3nr03249c (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, T. et al. Comparability of the skills of ambient and manufactured nanoparticles to induce mobile toxicity in keeping with an oxidative stress paradigm. Nano Lett. 6(8), 1794–1807. https://doi.org/10.1021/nl061025k (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and modifications in plastic density seem strongly depending on polymer kind. Environ. Pollut. 215, 331–339. https://doi.org/10.1016/j.envpol.2016.05.006 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharya, P., Lin, S., Turner, J. P. & Ke, P. C. Bodily adsorption of charged plastic nanoparticles impacts algal photosynthesis. J. Phys. Chem. C 114(39), 16556–16561. https://doi.org/10.1021/jp1054759 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Johansen, J. L., Rønn, R. & Ekelund, F. Toxicity of cadmium and zinc to small soil protists. Environ. Pollut. 242, 1510–1517. https://doi.org/10.1016/j.envpol.2018.08.034 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Díaz, S., Martín-González, A. & Carlos Gutiérrez, J. Analysis of heavy metallic acute toxicity and bioaccumulation in soil ciliated protozoa. Environ. Int. 32(6), 711–717. https://doi.org/10.1016/j.envint.2006.03.004 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subba, P. et al. Zinc stress induces physiological, ultra-structural and biochemical modifications in mandarin orange (Citrus Reticulata Blanco) seedlings. Physiol. Mol. Biol. Vegetation 20(4), 461–473. https://doi.org/10.1007/s12298-014-0254-2 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corcoll, N. et al. The impact of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: A translocation experiment. Ecol. Indic. 18, 620–631. https://doi.org/10.1016/j.ecolind.2012.01.026 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Moffett, B. F. et al. Zinc contamination decreases the bacterial variety of agricultural soil. FEMS Microbiol. Ecol. 43(1), 13–19. https://doi.org/10.1016/S0168-6496(02)00448-8 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuperman, R. G. & Carreiro, M. M. Soil heavy metallic concentrations, microbial biomass and enzyme actions in a contaminated grassland ecosystem. Soil Biol. Biochem. 29(2), 179–190. https://doi.org/10.1016/S0038-0717(96)00297-0 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Masmoudi, S. et al. Cadmium, copper, sodium and zinc results on diatoms: From heaven to hell-a assessment. Cryptogam Algol 34(2), 185–225. https://doi.org/10.7872/crya.v34.iss2.2013.185 (2013).

    Article 

    Google Scholar
     

  • Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29(6), 610–617. https://doi.org/10.1007/BF00260993 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Khan, M. & Scullion, J. Results of metallic (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their actions. Appl. Soil. Ecol. 20(2), 145–155. https://doi.org/10.1016/S0929-1393(02)00018-5 (2002).

    Article 

    Google Scholar
     

  • Guillard, R. R. L. & Lorenzen, C. J. Yellow-green algae with chlorophyllide C12. J. Phycol. 8(1), 10–14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x (1972).

    Article 
    CAS 

    Google Scholar
     

  • Zagata, P., Kopańska, M., Greczek-Stachura, M. & Burnecki, T. Acute toxicity of metals: Nickel and zinc to Paramecium bursaria and its endosymbionts. J. Microbiol. Biotechnol. Meals Sci. 04, 128–131. https://doi.org/10.15414/jmbfs.2015.4.special2.128-131 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lenz, R., Enders, Okay. & Nielsen, T. G. Microplastic publicity research ought to be environmentally life like. Proc. Natl. Acad. Sci. U. S. A. 113(29), E4121–E4122. https://doi.org/10.1073/pnas.1606615113 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schertzinger, G., Ruchter, N. & Sures, B. Metallic accumulation in sediments and amphipods downstream of mixed sewer overflows. Sci. Whole Environ. 616–617, 1199–1207. https://doi.org/10.1016/j.scitotenv.2017.10.199 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Erasmus, J. H. et al. Metallic accumulation in riverine macroinvertebrates from a platinum mining area. Sci. Whole Environ. https://doi.org/10.1016/j.scitotenv.2019.134738 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Impact of sonication on particle dispersion, administered dose and metallic launch of non-functionalized, non-inert metallic nanoparticles. J. Nanopart. Res. 18(9), 1–14. https://doi.org/10.1007/s11051-016-3597-5 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Taurozzi, J. S., Hackley, V. A. & Wiesner, M. R. Preparation of nanoparticle dispersions from powdered materials utilizing ultrasonic disruption. NIST Spec. Publ. 1200–2, 1–15 (2012).


    Google Scholar
     

  • Graupner, N. et al. Results of short-term flooding on aquatic and terrestrial microeukaryotic communities: A mesocosm strategy. Aquat. Microb. Ecol. 80(3), 257–272. https://doi.org/10.3354/ame01853 (2017).

    Article 

    Google Scholar
     

  • Strasser, R., Srivastava, A. & Tsimilli-Michael, M. The fluorescence transient as a instrument to characterize and display screen photosynthetic samples. In Probing Photosynthesis Mechanisms, Regulation and Adaption (eds Yanus, M. et al.) (Taylor and Francis, 2020).


    Google Scholar
     

  • Thwe, A. & Kasemsap, P. Quantification of OJIP fluorescence transient in tomato vegetation below acute ozone stress (2015).

  • Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A technique for finding out protistan variety utilizing massively parallel sequencing of V9 hypervariable areas of small-subunit ribosomal RNA genes. PLoS ONE 4(7), 1–9. https://doi.org/10.1371/journal.pone.0006372 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like RRNA-coding areas. Gene 71(2), 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, S. FastQC: A top quality management instrument for prime throughput sequence information (2015).

  • Lange, A. et al. AmpliconDuo: A split-sample filtering protocol for high-throughput amplicon sequencing of microbial communities. PLoS ONE 10(11), 1–22. https://doi.org/10.1371/journal.pone.0141590 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schmieder, R. & Edwards, R. High quality management and preprocessing of metagenomic datasets. Bioinformatics 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masella, P. A., Bartram, A. Okay., Truszkowski, J. M., Forehead, D. G. & Neufeld, J. D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-31 (2012).

    Article 

    Google Scholar
     

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and velocity of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Strong and quick clustering technique for amplicon-based research. PeerJ 2014(1), 1–13. https://doi.org/10.7717/peerj.593 (2014).

    Article 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: Excessive-resolution pattern inference from illumina amplicon information. Nat. Strategies 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welzel, M. et al. Natrix: A snakemake-based workflow for processing, clustering, and taxonomically assigning amplicon sequencing reads. BMC Bioinform. 21(1), 1–14. https://doi.org/10.1186/s12859-020-03852-4 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Oksanen, J. Package deal “vegan” Title Group Ecology Package deal (2022).

  • R Core Staff (2021). R: A language and setting for statistical computing. R Basis for Statistical Computing, Vienna, Austria. https://www.r-project.org/.

  • Chen, W., Simpson, J. & Leveque, C. RAM: R for amplicon-sequencing-based microbial-ecology (2018).

  • Yarza, P. et al. Uniting the classification of cultured and uncultured micro organism and archaea utilizing 16S RRNA gene sequences. Nat. Rev. Microbiol. 12(9), 635–645. https://doi.org/10.1038/nrmicro3330 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions—R bundle for multivariate imputation of left-censored information below a compositional strategy. Chemom. Intell. Lab. Syst. 143, 85–96. https://doi.org/10.1016/j.chemolab.2015.02.019 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this isn’t non-obligatory. Entrance. Microbiol. 8, 1–6. https://doi.org/10.3389/fmicb.2017.02224 (2017).

    Article 

    Google Scholar
     

  • Dusaucy, J., Gateuille, D., Perrette, Y. & Naffrechoux, E. Microplastic air pollution of worldwide lakes. Environ. Pollut. 284, 117075. https://doi.org/10.1016/j.envpol.2021.117075 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vardhan, Okay. H., Kumar, P. S. & Panda, R. C. A assessment on heavy metallic air pollution, toxicity and remedial measures: Present developments and future views. J. Mol. Liq. 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Damare, V. S. Range of thraustochytrid protists remoted from brown alga, Sargassum cinereum utilizing 18S RDNA sequencing and their morphological response to heavy metals. J. Mar. Biol. Assoc. 95(2), 265–276. https://doi.org/10.1017/S0025315414001696 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Giongo, A. et al. Adaption of Microbial communities to the hostile setting within the Doce river after the collapse of two iron ore tailing dams. Heliyon https://doi.org/10.1016/j.heliyon.2020.e04778 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, J. J., Häggblom, M. M. & Tate, R. L. Results of heavy metallic contamination and remediation on soil microbial communities within the neighborhood of a zinc smelter as indicated by evaluation of microbial neighborhood phospholipid fatty acid profiles. Biol. Fertil. Soils 38(2), 65–71. https://doi.org/10.1007/s00374-003-0642-1 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Baddar, Z. E., Peck, E. & Xu, X. Temporal deposition of copper and zinc within the sediments of metallic elimination constructed wetlands. PLoS ONE 16, 1–14. https://doi.org/10.1371/journal.pone.0255527 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Shen, Z., Wai, O. W. H. & Li, Y. S. Chemical partitioning of heavy metallic contaminants in sediments of the Pearl River Estuary. Chem. Speciat. Bioavailab. 12(1), 17–25. https://doi.org/10.3184/095422900782775607 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Müller, B. & Sigg, L. Interplay of hint metals with pure particle surfaces: Comparability between adsorption experiments and discipline measurements—Devoted to Werner Stumm for his sixty fifth birthday. Aquat. Sci. 52(1), 75–92. https://doi.org/10.1007/BF00878242 (1990).

    Article 

    Google Scholar
     

  • Bradl, H. B. Adsorption of heavy metallic ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18. https://doi.org/10.1016/j.jcis.2004.04.005 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegel, F. R. Environmental Geochemistry of Probably Poisonous Heavy Metals (Springer-Verlag, 2002).

    E book 

    Google Scholar
     

  • Vig, Okay., Megharaj, M., Sethunathan, N. & Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their actions in soil: A assessment. Adv. Environ. Res. 8(1), 121–135. https://doi.org/10.1016/S1093-0191(02)00135-1 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Nicolau, A., Mota, M. & Lima, N. Physiological responses of tetrahymena pyriformis to copper, zinc, cycloheximide and triton X-100. FEMS Microbiol. Ecol. 30(3), 209–216. https://doi.org/10.1016/S0168-6496(99)00057-4 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Admiraal, W. et al. Brief-term toxicity of zinc to microbenthic algae and micro organism in a metallic polluted stream. Water Res. 33(9), 1989–1996. https://doi.org/10.1016/S0043-1354(98)00426-6 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Bradac, P., Navarro, E., Odzak, N., Behra, R. & Sigg, L. Kinetics of cadmium accumulation in periphyton below freshwater circumstances. Environ. Toxicol. Chem. 28(10), 2108–2116. https://doi.org/10.1897/08-511R1.1 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collard, J. & Matagne, R. F. Cd2+ resistance in wild-type and mutant strains of Chlamydomonas reinhardtii. Environ. Exp. Bot. 34(2), 235–244 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial neighborhood dynamics to enhance optimum microbiome choice. Microbiome 7(1), 1–14. https://doi.org/10.1186/s40168-019-0702-x (2019).

    Article 

    Google Scholar
     

  • Buffle, J. The important thing function of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3(3), 155–158. https://doi.org/10.1071/ENv3n3_ES (2006).

    Article 
    CAS 

    Google Scholar
     

  • Nowack, B. & Bucheli, T. D. Prevalence, habits and results of nanoparticles within the setting. Environ. Pollut. 150(1), 5–22. https://doi.org/10.1016/j.envpol.2007.06.006 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fetzer, I. et al. The extent of practical redundancy modifications as species’ roles shift in numerous environments. Proc. Natl. Acad. Sci. U. S. A. 112(48), 14888–14893. https://doi.org/10.1073/pnas.1505587112 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biggs, C. R. et al. Does practical redundancy have an effect on ecological stability and resilience? A assessment and meta-analysis. Ecosphere https://doi.org/10.1002/ecs2.3184 (2020).

    Article 

    Google Scholar
     

  • Fleeger, J. W. How do oblique results of contaminants inform ecotoxicology? A assessment. Processes https://doi.org/10.3390/pr8121659 (2020).

    Article 

    Google Scholar
     

  • Oriekhova, O. & Stoll, S. Heteroaggregation of nanoplastic particles within the presence of inorganic colloids and pure natural matter. Environ. Sci. Nano. 5(3), 792–799. https://doi.org/10.1039/c7en01119a (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rowenczyk, L. et al. Heteroaggregates of polystyrene nanospheres and natural matter: Preparation, characterization and analysis of their toxicity to algae in environmentally related circumstances. Nanomaterials 11(2), 1–15. https://doi.org/10.3390/nano11020482 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Saavedra, J., Stoll, S. & Slaveykova, V. I. Affect of nanoplastic floor cost on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ. Pollut. 252, 715–722. https://doi.org/10.1016/j.envpol.2019.05.135 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bižic-Ionescu, M., Ionescu, D. & Grossart, H. P. Natural particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Entrance. Microbiol. 9, 1–15. https://doi.org/10.3389/fmicb.2018.02569 (2018).

    Article 

    Google Scholar
     

  • Lespes, G., Faucher, S. & Slaveykova, V. I. pure nanoparticles, anthropogenic nanoparticles, the place is the Frontier?. Entrance. Environ. Sci. 8, 1–5. https://doi.org/10.3389/fenvs.2020.00071 (2020).

    Article 

    Google Scholar
     

  • Stabnikova, O. et al. Microbial life on the floor of microplastics in pure waters. Appl. Sci. 11(24), 1–19. https://doi.org/10.3390/app112411692 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Suominen, S., Doorenspleet, Okay., Sinninghe Damsté, J. S. & Villanueva, L. Microbial neighborhood growth on mannequin particles within the deep sulfidic waters of the Black Sea. Environ. Microbiol. 23(6), 2729–2746. https://doi.org/10.1111/1462-2920.15024 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the distinction: Engineered and pure nanoparticles within the environment-release, habits, and destiny. Angew. Chem. Int. Ed. 53(46), 12398–12419. https://doi.org/10.1002/anie.201405050 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Amelia, T. S. et al. Marine microplastics as vectors of main ocean pollution and its hazards to the marine ecosystem and people. Prog. Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00405-4 (2021).

    Article 

    Google Scholar
     

  • Liu, J., Huang, J. & Che, F. Microalgae as feedstocks for biodiesel manufacturing. In Biodiesel—Feedstocks and Processing Applied sciences (ed. Stoytcheva, M.) (InTech, 2011). https://doi.org/10.5772/25600.

    Chapter 

    Google Scholar
     

  • Takamura, N., Kasai, F. & Watanabe, M. M. Results of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J. Appl. Phycol. 1(1), 39–52. https://doi.org/10.1007/BF00003534 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Brembu, T., Jørstad, M., Winge, P., Valle, Okay. C. & Bones, A. M. Genome-wide profiling of responses to cadmium within the diatom Phaeodactylum tricornutum. Environ. Sci. Technol. 45(18), 7640–7647. https://doi.org/10.1021/es2002259 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez, J. C. & Henriques, F. S. Biochemical, physiological and structural results of extra copper in vegetation. Bot. Rev. 57(3), 246–273 (1991).

    Article 

    Google Scholar
     

  • Haq, R. U., Rehman, A. & Shakoori, A. R. Impact of dichromate on inhabitants and progress of varied protozoa remoted from industrial effluents. Folia Microbiol. 45(3), 275–278. https://doi.org/10.1007/bf02908959 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Rehman, A., Shakoori, F. R. & Shakoori, A. R. Heavy metallic resistant freshwater ciliate, Euplotes mutabilis, remoted from industrial effluents has potential to decontaminate wastewater of poisonous metals. Bioresour. Technol. 99(9), 3890–3895. https://doi.org/10.1016/j.biortech.2007.08.007 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rehman, A., Ashraf, S., Qazi, J. I. & Shakoori, A. R. Uptake of lead by a ciliate, stylonychia mytilus, remoted from industrial effluents: Potential use in bioremediation of wastewater. Bull. Environ. Contam. Toxicol. 75(2), 290–296. https://doi.org/10.1007/s00128-005-0751-7 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shakoori, A. R., Rehman, A. & ul-Haq, R. A number of metallic resistance within the ciliate protozoan, vorticella microstoma, remoted from industrial effluents and its potential in bioremediation of poisonous wastes. Bull. Environ. Contam. Toxicol. 72(5), 1046–1051. https://doi.org/10.1007/s00128-004-0349-5 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falasco, E. et al. Morphological abnormalities of diatom silica partitions in relation to heavy metallic contamination and synthetic progress circumstances. Water SA 35(5), 595–606. https://doi.org/10.4314/wsa.v35i5.49185 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Tadros, M. G., Mbuthia, P. & Smith, W. Differential response of marine diatoms to hint metals. Bull. Environ. Contam. Toxicol. 44(6), 826–831. https://doi.org/10.1007/BF01702170 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wanner, M. et al. Soil testate amoebae and diatoms as bioindicators of an outdated heavy metallic contaminated floodplain in Japan. Microb. Ecol. 79(1), 123–133. https://doi.org/10.1007/s00248-019-01383-x (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, J., Podola, B. & Melkonian, M. Utility of a prototype-scale twin-layer photobioreactor for efficient N and P elimination from completely different course of levels of municipal wastewater by immobilized microalgae. Bioresour. Technol. 154, 260–266. https://doi.org/10.1016/j.biortech.2013.11.100 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T., Lin, G., Podola, B. & Melkonian, M. Steady elimination of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. J. Hazard. Mater. 297, 112–118. https://doi.org/10.1016/j.jhazmat.2015.04.080 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruning, Okay. An infection of the diatom Asterionella by a chytrid. I. Results of sunshine on copy and infectivity of the parasite. J. Plankton Res. 13(1), 103–117. https://doi.org/10.1093/plankt/13.1.103 (1991).

    Article 

    Google Scholar
     

  • Carney, L. T. & Lane, T. W. Parasites in algae mass tradition. Entrance. Microbiol. 5, 1–8. https://doi.org/10.3389/fmicb.2014.00278 (2014).

    Article 

    Google Scholar
     

  • Hanic, L. A., Sekimoto, S. & Bates, S. S. Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island. Botany 87(11), 1096–1105. https://doi.org/10.1139/B09-070 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Solar, A. et al. Fertilization alters protistan customers and parasites in crop-associated microbiomes. Environ. Microbiol. 23(4), 2169–2183. https://doi.org/10.1111/1462-2920.15385 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholz, B., Guillou, L., Marano, A. V., Neuhauser, S. & Brooke, Okay. Europe PMC funders group zoosporic parasites infecting marine diatoms—A black field that must be opened. Fungal Ecol. https://doi.org/10.1016/j.funeco.2015.09.002.Zoosporic (2017).

    Article 

    Google Scholar
     

  • Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic an infection of the diatom Guinardia delicatula, a recurrent and ecologically vital phenomenon on the New England Shelf. Mar. Ecol. Prog. Ser. 503, 1–10. https://doi.org/10.3354/meps10784 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Duarte, S., Pascoal, C. & Cássio, F. Results of zinc on leaf decomposition by fungi in streams: Research in microcosms. Microb. Ecol. 48(3), 366–374. https://doi.org/10.1007/s00248-003-2032-5 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kammerlander, B. et al. Excessive variety of protistan plankton communities in distant excessive mountain lakes within the European Alps and the Himalayan Mountains. FEMS Microbiol. Ecol. 91(4), 1–10. https://doi.org/10.1093/femsec/fiv010 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sieber, G., Beisser, D., Bock, C. & Boenigk, J. Protistan and fungal variety in soils and freshwater lakes are considerably completely different. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-77045-7 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gunaalan, Okay., Fabbri, E. & Capolupo, M. The hidden risk of plastic leachates: A vital assessment on their impacts on aquatic organisms. Water Res. https://doi.org/10.1016/j.watres.2020.116170 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tetu, S. G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L. D., Moore, L.R. & Paulsen, I.T. Plastic leachates impair progress and oxygen manufacturing in Prochlorococcus, the ocean’s most ample photosynthetic micro organism. Commun. Biol. 2(1), 1–9. https://doi.org/10.1038/s42003-019-0410-x (2019).

  • Gouin, T., Roche, N., Lohmann, R. & Hodges, G. A Thermodynamic strategy for assessing the environmental publicity of chemical substances absorbed to microplastic. Environ. Sci. Technol. 45(4), 1466–1472. https://doi.org/10.1021/es1032025 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lohmann, R. Microplastics are usually not vital for the biking and bioaccumulation of natural pollution within the oceans—However ought to microplastics be thought of POPs themselves?. Integr. Environ. Assess. Manag. 13(3), 460–465. https://doi.org/10.1002/ieam.1914 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sukkasem, C. & Laehlah, S. A cost-effective upflow bio-filter circuit (UBFC): A biocatalyst microbial gas cell for sulfate-sulfide wealthy wastewater therapy. Environ. Sci. 1(2), 161–168. https://doi.org/10.1039/c4ew00028e (2015).

    Article 
    CAS 

    Google Scholar
     

  • Abatenh, E., Gizaw, B., Tsegaye, Z. & Wassie, M. The function of microorganisms in bioremediation-A assessment. Open J. Environ. Biol. 2(1), 38–46. https://doi.org/10.17352/ojeb (2017).

    Article 

    Google Scholar
     

  • Zrimec, J., Kokina, M., Jonasson, S., Zorrilla, F. & Zelezniak, A. Plastic-degrading potential throughout the worldwide microbiome correlates with current air pollution developments. MBio https://doi.org/10.1128/mBio (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siver, P. A. Synurophyte algae. In Freshwater Algae of North America. Ecology and classification (eds Wehr, J. D. & Sheath, R. G.) 523–558 (Elsevier, 2003).

    Chapter 

    Google Scholar
     

  • Andersen, R. A. Molecular systematics of the chrysophyceae and synurophyceae. In Unravelling the Algae: The Previous, Current, and Way forward for Algal Systematics (eds Brodie, J. & Lewis, J.) 285–314 (CRC Press, Boca Raton, 2007).

    Chapter 

    Google Scholar
     

  • Engin, I. Okay., Cekmecelioglu, D., Yücel, A. M. & Oktem, H. A. Analysis of heterotrophic and mixotrophic cultivation of novel Micractinium Sp. ME05 on vinasse and its scale up for biodiesel manufacturing. Bioresour. Technol. 251, 128–134. https://doi.org/10.1016/j.biortech.2017.12.023 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patrick, R. Ecology of freshwater diatoms and diatom communities. In The Biology of Diatoms (ed. Werner, D.) 284–332 (College of California Press, 1977).


    Google Scholar
     

  • Findenig, B. M., Chatzinotas, A. & Boenigk, J. Taxonomic and ecological characterization of stomatocysts of spumella-like flagellates (Chrysophyceae). J. Phycol. 46(5), 868–881. https://doi.org/10.1111/j.1529-8817.2010.00892.x (2010).

    Article 

    Google Scholar
     

  • Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E. & Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential merchandise. Water Res. 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Preisig, H. R. & Hibberd, D. J. Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and associated genera 3. Nord. J. Bot. 3(6), 695–723. https://doi.org/10.1111/j.1756-1051.1983.tb01481.x (1983).

    Article 

    Google Scholar
     

  • Atkins, M. S. et al. Tolerance of flagellated protists to excessive sulfide and metallic concentrations doubtlessly encountered at deep-sea hydrothermal vents. Mar. Ecol. Prog. Ser. 226, 63–75. https://doi.org/10.3354/meps226063 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Manru, G., Weisong, F. & Yunfen, S. Ecological examine on protozoa within the sediment of the three-gorges space of the Changjiang River. Chin. J. Oceanol. Limnol. 6(3), 272–280. https://doi.org/10.1007/BF02846505 (1988).

    Article 

    Google Scholar
     

  • Tomilina, I. I., Gremyachikh, V. A., Myl’Nikov, A. P. & Komov, V. T. The impact of metallic oxide nanoparticles (CeO2, TiO2, and ZnO) on organic parameters of freshwater nanoflagellates and crustaceans. Dokl. Biol. Sci. 436(1), 53–55. https://doi.org/10.1134/S0012496611010169 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schampera, C. et al. Publicity to nanoplastics impacts the result of infectious illness in phytoplankton. Environ. Pollut. https://doi.org/10.1016/j.envpol.2021.116781 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gonçalves, J. M., Sousa, V. S., Teixeira, M. R. & Bebianno, M. J. Continual toxicity of polystyrene nanoparticles within the marine mussel Mytilus galloprovincialis. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132356 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kelpsiene, E., Torstensson, O., Ekvall, M. T., Hansson, L. A. & Cedervall, T. Lengthy-term publicity to nanoplastics reduces life-time in Daphnia magna. Sci. Rep. 10(1), 1–7. https://doi.org/10.1038/s41598-020-63028-1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Amin, N. M. Strategies for evaluation of heavy metallic toxicity utilizing Acanthamoeba Sp, a small, bare and free-living amoeba. Funct. Ecosyst. https://doi.org/10.5772/36008 (2012).

    Article 

    Google Scholar
     

  • Amin, N. M., Azhar, N. & Shazili, M. Cytotoxic results of mercury, cadmium, lead and zinc on Acanthamoeba Castellanii (2006).

  • Gnecco, I., Berretta, C., Lanza, L. G. & la Barbera, P. Storm water air pollution within the city setting of Genoa, Italy. Atmos. Res. 77, 60–73. https://doi.org/10.1016/j.atmosres.2004.10.017 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Heim, R. R. An summary of climate and local weather extremes—Merchandise and developments. Climate Clim. Extrem. 10, 1–9. https://doi.org/10.1016/j.wace.2015.11.001 (2015).

    Article 

    Google Scholar
     

  • Saiki, M. Okay., Castleberry, D. T., Might, T. W., Martin, B. A. & Bullard, F. N. Copper, cadmium, and zinc concentrations in aquatic meals chains from the higher Sacramento River (California) and chosen tributaries. Arch. Environ. Contam. Toxicol. 29(4), 484–491. https://doi.org/10.1007/BF00208378 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Wagner, S. et al. Tire put on particles within the aquatic setting—A assessment on era, evaluation, incidence, destiny and results. Water Res. 139, 83–100. https://doi.org/10.1016/j.watres.2018.03.051 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Zhao, B., Xu, G. & Guan, Y. Characterizing fluvial heavy metallic pollutions below completely different rainfall circumstances: Implication for aquatic setting safety. Sci. Whole Environ. 635, 1495–1506. https://doi.org/10.1016/j.scitotenv.2018.04.211 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. Characterization of nitrosamines and nitrosamine precursors as non-point supply pollution throughout heavy rainfall occasions in an city water setting. J. Hazard. Mater. 424, 127552. https://doi.org/10.1016/j.jhazmat.2021.127552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hüffer, T., Wagner, S., Reemtsma, T. & Hofmann, T. Sorption of natural substances to tire put on supplies: Similarities and variations with different sorts of microplastic. TrAC Developments Anal. Chem. 113, 392–401. https://doi.org/10.1016/j.trac.2018.11.029 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tamis, J. E. et al. Environmental dangers of automobile tire microplastic particles and different street runoff pollution. Microplastics Nanoplastics 1(1), 1–17. https://doi.org/10.1186/s43591-021-00008-w (2021).

    Article 

    Google Scholar
     

  • Chèvre, N. et al. Substance movement evaluation as a instrument for city water administration. Water Sci. Technol. 63(7), 1341–1348. https://doi.org/10.2166/wst.2011.132 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Šourková, M., Adamcová, D. & Vaverková, M. D. The affect of microplastics from floor tyres on the acute, subchronical toxicity and microbial respiration of soil. Environ. MDPI 8(11), 1–14. https://doi.org/10.3390/environments8110128 (2021).

    Article 

    Google Scholar
     

  • Ye, G., Zhang, X., Yan, C., Lin, Y. & Huang, Q. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. Environ. Int. 156, 106724. https://doi.org/10.1016/j.envint.2021.106724 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments