Wednesday, September 7, 2022
HomeMicrobiologyMetagenomic and metatranscriptomic insights into sulfate-reducing micro organism in a revegetated acidic...

Metagenomic and metatranscriptomic insights into sulfate-reducing micro organism in a revegetated acidic mine wasteland


  • Barton, L. L. & Hamilton, W. A. Sulphate-reducing Micro organism: Environmental And Engineered Techniques. (Cambridge College Press, Cambridge, 2007).

    E-book 

    Google Scholar
     

  • Rabus, R. et al. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv. Microb. Physiol. 66, 55–321 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rückert, C. Sulfate discount in microorganisms — latest advances and biotechnological functions. Curr. Opin. Microbiol. 33, 140–146 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Venceslau, S. S., Stockdreher, Y., Dahl, C. & Pereira, I. A. C. The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. Biochim Biophys Acta 1837, 1148–1164 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Santos, A. A. et al. A protein trisulfide {couples} dissimilatory sulfate discount to vitality conservation. Science 350, 1541–1545 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bradley, A. S., Leavitt, W. D. & Johnston, D. T. Revisiting the dissimilatory sulfate discount pathway. Geobiology 9, 446–457 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leavitt, W. D., Bradley, A. S., Santos, A. A., Pereira, I. A. C. & Johnston, D. T. Sulfur isotope results of dissimilatory sulfite reductase. Entrance. Microbiol. https://doi.org/10.3389/fmicb.2015.01392 (2015).

  • Koschorreck, M. Microbial sulphate discount at a low pH microbial sulphate discount at a low pH. FEMS Microbiol. Ecol. 64, 329–342 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang, Y. J. et al. Variety and characterization of sulfate-reducing micro organism in groundwater at a uranium mill tailings web site. Appl. Environ. Microbiol. 67, 3149–3160 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Friedrich, M. W. Phylogenetic evaluation reveals a number of lateral transfers of adenosine-5’-phosphosulfate reductase genes amongst sulfate-reducing microorganisms. J. Bacteriol. 184, 278–289 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meyer, B. & Kuever, J. Molecular evaluation of the variety of sulfate-reducing and sulfur-oxidizing prokaryotes within the atmosphere, utilizing aprA as purposeful marker gene. Appl. Environ. Microbiol. 73, 7664–7679 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Watanabe, T., Kojima, H., Takano, Y. & Fukui, M. Variety of sulfur-cycle prokaryotes in freshwater lake sediments investigated utilizing aprA because the purposeful marker gene. Syst. Appl. Microbiol. 36, 436–443 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vigneron, A. et al. Past the tip of the iceberg; a brand new view of the variety of sulfite- and sulfate-reducing microorganisms. ISME J. 12, 2096–2099 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anantharaman, Ok. et al. Expanded variety of microbial teams that form the dissimilatory sulfur cycle. ISME J. 12, 1715–1728 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hausmann, B. et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism. ISME J. 12, 1729–1742 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martins, P. D. et al. Viral and metabolic controls on excessive charges of microbial sulfur and carbon biking in wetland ecosystems. Microbiome https://doi.org/10.1186/s40168-018-0522-4 (2018).

  • Bell, E. et al. Lively sulfur biking within the terrestrial deep subsurface. ISME J. 14, 1260–1272 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Colman, D. R. et al. Phylogenomic evaluation of novel Diaforarchaea is per sulfite however not sulfate discount in volcanic environments on early Earth. ISME J. 14, 1316–1331 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Turaev, D. & Rattei, T. Excessive definition for techniques biology of microbial communities: metagenomics will get genome-centric and strain-resolved. Curr. Opin. Biotechnol. 39, 174–181 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raghoebarsing, A. A. et al. A microbial consortium {couples} anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wrighton, Ok. C. et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 8, 1452–1463 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brown, C. T. et al. Uncommon biology throughout a gaggle comprising greater than 15% of area Micro organism. Nature 523, 208–211 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ljung, Ok., Maley, F., Cook dinner, A. & Weinstein, P. Acid sulfate soils and human well being — a millennium ecosystem evaluation. Environ. Int. 35, 1234–1242 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dolla, A., Fournier, M. & Dermoun, Z. Oxygen protection in sulfate-reducing micro organism. J. Biotechnol. 126, 87–100 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Canfield, D. E. & Des Marais, D. J. Cardio sulfate discount in microbial mats. Science 251, 1471–1473 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Minz, D. et al. Sudden inhabitants distribution in a microbial mat neighborhood: sulfate-reducing micro organism localized to the extremely oxic chemocline in distinction to a eukaryotic choice for anoxia. Appl. Environ. Microbiol. 65, 4659–4665 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schoeffler, M. et al. Progress of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory vitality conservation after O2-driven experimental evolution. Environ. Microbiol. 21, 360–373 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fortin, D. & Praharaj, T. Function of microbial exercise in Fe and S biking in sub-oxic to anoxic sulfide-rich mine tailings. J. Nucl. Radiochem. Sci. 6, 39–42 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Winch, S., Mills, H. J., Kostka, J. E., Fortin, D. & Lean, D. R. S. Identification of sulfate-reducing micro organism in methylmercury-contaminated mine tailings by evaluation of SSU rRNA genes. FEMS Microbiol. Ecol. 68, 94–107 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, T. T. et al. Adjustments in microbial neighborhood composition following phytostabilization of a particularly acidic Cu mine tailings. Soil Biol. Biochem. 114, 52–58 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liang, J. L. et al. Novel phosphate-solubilizing micro organism improve soil phosphorus biking following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kludze, H. Ok., DeLaune, R. D. & Patrick, W. H. Jr. Aerenchyma formation and methane and oxygen trade in rice. Soil Sci. Soc. Am. J. 57, 386–391 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Eichorst, S. A. et al. Genomic insights into the Acidobacteria reveal methods for his or her success in terrestrial environments. Environ. Microbiol. 20, 1041–1063 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • García-Fraile, P., Benada, O., Cajthaml, T., Baldrian, P. & Lladód, S. Terracidiphilus gabretensis gen. nov., sp. nov., an considerable and energetic forest soil acidobacterium necessary in natural matter transformation. Appl. Environ. Microbiol. 82, 560–569 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cypionka, H., Widdel, F. & Pfennig, N. Survival of sulfate-reducing micro organism after oxygen stress, and progress in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Ecol. 1, 39–45 (1985).

    Article 

    Google Scholar
     

  • Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution point out H2 is a broadly utilised vitality supply for microbial progress and survival. ISME J. 10, 761–777 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ud-Din, A. I. M. S. & Roujeinikova, A. Methyl-accepting chemotaxis proteins: a core sensing ingredient in prokaryotes and archaea. Cell Mol. Life Sci. 74, 3293–3303 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wuichet, Ok. & Zhulin, I. B. Origins and diversification of a posh sign transduction system in prokaryotes. Sci. Sign https://doi.org/10.1126/scisignal.2000724 (2010).

  • Ray, J. et al. Exploring the position of CheA3 in Desulfovibrio vulgaris Hildenborough motility. Entrance. Microbiol. https://doi.org/10.3389/fmicb.2014.00077 (2014).

  • Liu, R. Y. & Ochman, H. Stepwise formation of the bacterial flagellar system. Proc. Natl Acad. Sci. USA 104, 7116–7121 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wall, D. & Kaiser, D. Sort IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crispim, J. S. et al. Screening and characterization of prophages in Desulfovibrio genomes. Sci. Rep. https://doi.org/10.1038/s41598-018-27423-z (2018).

  • Dörries, M., Wohlbrand, L., Kube, M., Reinhardt, R. & Rabus, R. Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059. BMC Genomics https://doi.org/10.1186/s12864-016-3236-7 (2016).

  • Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral sign from microbial genomic knowledge. PeerJ https://doi.org/10.7717/peerj.985 (2015).

  • Jang, H. B. et al. Taxonomic project of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Šimoliūnas, E. et al. Klebsiella phage vB_KleM-RaK2 — a large singleton of the household Myoviridae. PLoS ONE https://doi.org/10.1371/journal.pone.0060717 (2013).

  • Silva, I. R., Jers, C., Meyer, A. S. & Mikkelsen, J. D. Rhamnogalacturonan I modifying enzymes: an replace. N. Biotechnol. 33, 41–54 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cohen-Kupiec, R. & Chet, I. The molecular biology of chitin digestion. Curr. Opin. Biotechnol. 9, 270–277 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Upadhyay, A. A., Fleetwood, A. D., Adebali, O., Finn, R. D. & Zhulin, I. B. Cache domains which are homologous to, however totally different from PAS domains comprise the biggest superfamily of extracellular sensors in prokaryotes. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1004862 (2016).

  • Zeng, L. & Burne, R. A. Sucrose-and fructose-specific results on the transcriptome of Streptococcus mutans, as decided by RNA sequencing. Appl. Environ. Microbiol. 82, 146–156 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flieder, M. et al. Novel taxa of Acidobacteriota implicated in seafloor sulfur biking. ISME J. 15, 3159–3180 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lombard, V., Ramulu, H. G., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colleran, E., Finnegan, S. & Lens, P. Anaerobic therapy of sulphate-containing waste streams. Anton. Leeuw. Int. J. G. 67, 29–46 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Vignais, P. M. & Billoud, B. Prevalence, classification, and organic perform of hydrogenases: an outline. Chem. Rev. 107, 4206–4272 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heidelberg, J. F. et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22, 554–559 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Emerson, J. B. et al. Host-linked soil viral ecology alongside a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parikka, Ok. J., Le Romancer, M., Wauters, N. & Jacquet, S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a wide range of ecosystems. Biol. Rev. 92, 1081–1100 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Anantharaman, Ok. et al. Sulfur oxidation genes in various deep-sea viruses. Science 344, 757–760 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 micro organism as revealed by single-cell- and meta- genomics. Elife https://doi.org/10.7554/eLife.03125 (2014).

  • Jin, M. et al. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome https://doi.org/10.1186/s40168-019-0675-9 (2019).

  • Howard, M. B., Ekborg, N. A., Weiner, R. M. & Hutcheson, S. W. Detection and characterization of chitinases and different chitin-modifying enzymes. J. Ind. Microbiol. Biotechnol. 30, 627–635 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dinsdale, E. A. et al. Purposeful metagenomic profiling of 9 biomes. Nature 452, 629–632 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, X. X. et al. Cryptic prophages assist micro organism address opposed environments. Nat. Commun. https://doi.org/10.1038/ncomms1146 (2010).

  • Sharon, I. et al. Comparative metagenomics of microbial traits inside oceanic viral communities. ISME J. 5, 1178–1190 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Praharaj, T. & Fortin, D. Indicators of microbial sulfate discount in acidic sulfide-rich mine tailings. Geomicrobiol. J. 21, 457–467 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Morris, R. L. & Schmidt, T. M. Shallow respiration: bacterial life at low O2. Nat. Rev. Microbiol. 11, 205–212 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lamrabet, O. et al. Oxygen discount within the strict anaerobe Desulfovibrio vulgaris Hildenborough: characterization of two membrane-bound oxygen reductases. Microbiology 157, 2720–2732 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kieft, Ok. & Anantharaman, Ok. Deciphering energetic prophages from metagenomes. mSystems https://doi.org/10.1128/msystems.00084-22 (2022).

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a brand new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an environment friendly device for precisely reconstructing single genomes from complicated microbial communities. PeerJ https://doi.org/10.7717/peerj.1165 (2015).

  • Parks, D. H. et al. Restoration of almost 8,000 metagenome-assembled genomes considerably expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation web site identification. BMC Bioinformatics 11, 1–11 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology useful resource based mostly on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Quick and delicate protein alignment utilizing DIAMOND. Nat. Strategies 12, 59–60 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müller, A. L., Kjeldsen, Ok. U., Rattei, T., Pester, M. & Loy, A. Phylogenetic and environmental variety of DsrAB-type dissimilatory (bi) sulfite reductases. ISME J. 9, 1152–1165 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tan, S. et al. Insights into ecological position of a brand new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME J. 13, 2044–2057 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: a number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a device for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Stamatakis, A. RAxML model 8: a device for phylogenetic evaluation and post-analysis of huge phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life v2: on-line annotation and show of phylogenetic timber made straightforward. Nucleic Acids Res. 39, W475–W478 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robert, X. & Gouet, P. Deciphering key options in protein buildings with the brand new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parks, D. H. et al. A standardized bacterial taxonomy based mostly on genome phylogeny considerably revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a brand new technique for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. https://doi.org/10.1038/ncomms3304 (2013).

  • Yin, Y. B. et al. dbCAN: an internet useful resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1002195 (2011).

  • Brioukhanov, A. L. & Netrusov, A. I. Aerotolerance of strictly anaerobic microorganisms and elements of protection towards oxidative stress: a assessment. Appl. Biochem. Microbiol. 43, 567–582 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 net portal for protein modeling, prediction and evaluation. Nat. Protoc. 10, 845–858 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, S. F., Zhou, Y. Q., Chen, Y. R. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: quick and correct filtering of ribosomal RNAs in metatranscriptomic knowledge. Bioinformatics 28, 3211–3217 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments