Wednesday, September 7, 2022
HomeMicrobiologyLengthy-term reminiscence CD8+ T cells particular for SARS-CoV-2 in people who acquired...

Lengthy-term reminiscence CD8+ T cells particular for SARS-CoV-2 in people who acquired the BNT162b2 mRNA vaccine


  • Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 384, 1412–1423 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goldshtein, I. et al. Affiliation between BNT162b2 vaccination and incidence of SARS-CoV-2 an infection in pregnant girls. JAMA 326, 728–735 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haas, E. J. et al. Influence and effectiveness of mRNA BNT162b2 vaccine in opposition to SARS-CoV-2 infections and COVID-19 circumstances, hospitalisations, and deaths following a nationwide vaccination marketing campaign in Israel: An observational research utilizing nationwide surveillance knowledge. Lancet 397, 1819–1829 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Corridor, V. J. et al. COVID-19 vaccine protection in health-care employees in England and effectiveness of BNT162b2 mRNA vaccine in opposition to an infection (SIREN): A potential, multicentre, cohort research. Lancet 397, 1725–1735 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tenforde, M. W. et al. Effectiveness of extreme acute respiratory syndrome coronavirus 2 messenger RNA vaccines for stopping coronavirus illness 2019 hospitalizations in the USA. Clin. Infect. Dis. 74, 1515–1524 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tenforde, M. W. et al. Affiliation between mRNA vaccination and COVID-19 hospitalization and illness severity. JAMA 326, 2043–2054 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thompson, M. G. et al. Prevention and attenuation of Covid-19 with the BNT162b2 and mRNA-1273 vaccines. N. Engl. J. Med. 385, 320–329 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jackson, L. A. et al. An mRNA vaccine in opposition to SARS-CoV-2 – preliminary report. N. Engl. J. Med. 383, 1920–1931 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mulligan, M. J. et al. Part I/II research of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589–593 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Folegatti, P. M. et al. Security and immunogenicity of the ChAdOx1 nCoV-19 vaccine in opposition to SARS-CoV-2: A preliminary report of a section 1/2, single-blind, randomised managed trial. Lancet 396, 467–478 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anderson, E. J. et al. Security and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 383, 2427–2438 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu, F. C. et al. Security, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 395, 1845–1854 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, J. et al. Security and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in youthful and older Chinese language adults: A randomized, placebo-controlled, double-blind section 1 research. Nat. Med. 27, 1062–1070 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Walsh, E. E. et al. Security and immunogenicity of two RNA-based Covid-19 vaccine candidates. N. Engl. J. Med. 383, 2439–2450 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ewer, Ok. J. et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a section 1/2 scientific trial. Nat. Med. 27, 270–278 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Angyal, A. et al. T-cell and antibody responses to first BNT162b2 vaccine dose in beforehand contaminated and SARS-CoV-2-naive UK health-care employees: A multicentre potential cohort research. Lancet Microbe 3, e21–e31 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sette, A. & Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Levin, E. G. et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naaber, P. et al. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal potential research. Lancet Reg. Well being Eur. 10, 100208 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lozano-Rodriguez, R. et al. Mobile and humoral practical responses after BNT162b2 mRNA vaccination differ longitudinally between naive and topics recovered from COVID-19. Cell Rep. 38, 110235 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Starr, T. N., Greaney, A. J., Dingens, A. S. & Bloom, J. D. Full map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2, 100255 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Planas, D. et al. Lowered sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoffmann, M. et al. SARS-CoV-2 variant B.1.617 is immune to bamlanivimab and evades antibodies induced by an infection and vaccination. Cell Rep. 36, 109415 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Edara, V. V. et al. An infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants. N. Engl. J. Med. 385, 664–666 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Davis, C. et al. Lowered neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathog. 17, e1010022 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoffmann, M. et al. The Omicron variant is very resistant in opposition to antibody-mediated neutralization: Implications for management of the COVID-19 pandemic. Cell 185, 447–456.e411 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, J. et al. Vaccines elicit extremely conserved mobile immunity to SARS-CoV-2 Omicron. Nature 603, 493–496 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Garcia-Beltran, W. F. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity in opposition to SARS-CoV-2 Omicron variant. Cell 185, 457–466.e454 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perez-Then, E. et al. Neutralizing antibodies in opposition to the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 28, 481–485 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pang, N. Y., Pang, A. S., Chow, V. T. & Wang, D. Y. Understanding neutralising antibodies in opposition to SARS-CoV-2 and their implications in scientific follow. Mil. Med. Res. 8, 47 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, P. C. et al. Neutralizing monoclonal antibodies for remedy of COVID-19. Nat. Rev. Immunol. 21, 382–393 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cohen, Ok. W. et al. Longitudinal evaluation reveals sturdy and broad immune reminiscence after SARS-CoV-2 an infection with persisting antibody responses and reminiscence B and T cells. Cell Rep. Med. 2, 100354 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and illness severity. Cell 183, 996–1012.e1019 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 sufferers with acute respiratory misery syndrome. Sci. Immunol. 5, eabd2071 (2020).

  • Tan, A. T. et al. Early induction of practical SARS-CoV-2-specific T cells associates with speedy viral clearance and delicate illness in COVID-19 sufferers. Cell Rep. 34, 108728 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kalimuddin, S. et al. Early T cell and binding antibody responses are related to COVID-19 RNA vaccine efficacy onset. Med. (N. Y) 2, 682–688.e684 (2021).

    CAS 

    Google Scholar
     

  • Loyal, L. et al. Cross-reactive CD4(+) T cells improve SARS-CoV-2 immune responses upon an infection and vaccination. Science 374, eabh1823 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grifoni, A. et al. SARS-CoV-2 human T cell epitopes: Adaptive immune response in opposition to COVID-19. Cell Host Microbe 29, 1076–1092 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oberhardt, V. et al. Fast and secure mobilization of CD8(+) T cells by SARS-CoV-2 mRNA vaccine. Nature 597, 268–273 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sahin, U. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in people. Nature 595, 572–577 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mudd, P. A. et al. SARS-CoV-2 mRNA vaccination elicits a strong and protracted T follicular helper cell response in people. Cell 185, 603–613.e615 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mateus, J. et al. Low-dose mRNA-1273 COVID-19 vaccine generates sturdy reminiscence enhanced by cross-reactive T cells. Science 374, eabj9853 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell reminiscence in a position to cross-recognize variants from Alpha to Omicron. Cell 185, 847–859.e811 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goel, R. R. et al. mRNA vaccines induce sturdy immune reminiscence to SARS-CoV-2 and variants of concern. Science 374, abm0829 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Solberg, O. D. et al. Balancing choice and heterogeneity throughout the classical human leukocyte antigen loci: A meta-analytic evaluate of 497 inhabitants research. Hum. Immunol. 69, 443–464 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gonzalez-Galarza, F. F. et al. Allele frequency internet database (AFND) 2020 replace: gold-standard knowledge classification, open entry genotype knowledge and new question instruments. Nucleic Acids Res. 48, D783–D788 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Tarke, A. et al. Complete evaluation of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 circumstances. Cell Rep. Med. 2, 100204 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, H. et al. Profiling CD8(+) T cell epitopes of COVID-19 convalescents reveals diminished mobile immune responses to SARS-CoV-2 variants. Cell Rep. 36, 109708 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rowntree, L. C. et al. SARS-CoV-2-specific CD8(+) T-cell responses and TCR signatures within the context of a outstanding HLA-A*24:02 allomorph. Immunol. Cell Biol. 99, 990–1000 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nelde, A. et al. SARS-CoV-2-derived peptides outline heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 22, 74–85 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Kared, H. et al. SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 people. J. Clin. Make investments. 131, e145476 (2021).

  • Francis, J. M. et al. Allelic variation at school I HLA determines CD8(+) T cell repertoire form and cross-reactive reminiscence responses to SARS-CoV-2. Sci. Immunol. 7, eabk3070 (2021).


    Google Scholar
     

  • Ferretti, A. P. et al. Unbiased screens present CD8(+) T cells of COVID-19 sufferers acknowledge shared epitopes in SARS-CoV-2 that largely reside outdoors the spike protein. Immunity 53, 1095–1107.e1093 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hadfield, J. et al. Nextstrain: Actual-time monitoring of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fang, S. et al. GESS: A database of worldwide analysis of SARS-CoV-2/hCoV-19 sequences. Nucleic Acids Res. 49, D706–D714 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Motozono, C. et al. SARS-CoV-2 spike L452R variant evades mobile immunity and will increase infectivity. Cell Host Microbe 29, 1124–1136.e1111 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shimizu, Ok. et al. Identification of TCR repertoires in functionally competent cytotoxic T cells cross-reactive to SARS-CoV-2. Commun. Biol. 4, 1365 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Swadling, L. et al. Pre-existing polymerase-specific T cells increase in abortive seronegative SARS-CoV-2. Nature 601, 110–117 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chikata, T. et al. Host-specific adaptation of HIV-1 subtype B within the Japanese inhabitants. J. Virol. 88, 4764–4775 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Saito, S., Ota, S., Yamada, E., Inoko, H. & Ota, M. Allele frequencies and haplotypic associations outlined by allelic DNA typing at HLA class I and sophistication II loci within the Japanese inhabitants. Tissue Antigens 56, 522–529 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ikeda, N. et al. Dedication of HLA-A, -C, -B, -DRB1 allele and haplotype frequency in Japanese inhabitants based mostly on household research. Tissue Antigens 85, 252–259 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karaki, S. et al. HLA-B51 transgenic mice as recipients for manufacturing of polymorphic HLA-A, B-specific antibodies. Immunogenetics 37, 139–142 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ibe, M. et al. Function of robust anchor residues within the efficient binding of 10-mer and 11-mer peptides to HLA-A*2402 molecules. Immunogenetics 44, 233–241 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solar, X. et al. Results of a single escape mutation on T cell and HIV-1 Co-adaptation. Cell Rep. 15, 2279–2291 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments