Sunday, November 6, 2022
HomeMicrobiologyLabel-free third harmonic era imaging and quantification of lipid droplets in stay...

Label-free third harmonic era imaging and quantification of lipid droplets in stay filamentous fungi


  • Weigelin, B., Bakker, G. J. & Friedl, P. Third harmonic era microscopy of cells and tissue group. J. Cell Sci. 129, 245–255 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • Yelin, D. & Silberberg, Y. Laser scanning third-harmonic-generation microscopy in biology. Choose. Categorical 5(8), 169–175 (1999).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Barzda, V. et al. Visualization of mitochondria in cardiomyocytes. Choose. Categorical 13, 8263 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • Witte, S. et al. Label-free stay mind imaging and focused patching with third-harmonic era microscopy. Proc. Natl. Acad. Sci. U. S. A. 108, 5970–5975 (2011).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tsai, C.-Ok. et al. Imaging granularity of leukocytes with third harmonic era microscopy. Biomed. Choose. Categorical 3, 2234 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weigelin, B., Bakker, G.-J. & Friedl, P. Intravital third harmonic era microscopy of collective melanoma cell invasion. IntraVital 1, 32–43 (2012).

    PubMed 

    Google Scholar
     

  • Gavgiotaki, E. et al. Third Harmonic Technology microscopy as a dependable diagnostic software for evaluating lipid physique modification throughout cell activation: The instance of BV-2 microglia cells. J. Struct. Biol. 189, 105–113 (2015).

    PubMed 
    CAS 

    Google Scholar
     

  • Oron, D. et al. Depth-resolved structural imaging by third-harmonic era microscopy. J. Struct. Biol. 147, 3–11 (2004).

    PubMed 

    Google Scholar
     

  • Solar, C.-Ok. et al. Multiharmonic-generation biopsy of pores and skin. Choose. Lett. 28, 2488 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • Aptel, F. et al. Multimodal nonlinear imaging of the human cornea. Investig. Ophthalmol. Vis. Sci. 51, 2459–2465 (2010).


    Google Scholar
     

  • Débarre, D. et al. Imaging lipid our bodies in cells and tissues utilizing third-harmonic era microscopy. Nat. Strategies 3, 47–53 (2006).

    PubMed 

    Google Scholar
     

  • Farrar, M. J., Sensible, F. W., Fetcho, J. R. & Schaffer, C. B. In vivo imaging of myelin within the vertebrate central nervous system utilizing third harmonic era microscopy. Biophys. J. 100, 1362–1371 (2011).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Genthial, R. et al. Label-free imaging of bone multiscale porosity and interfaces utilizing third-harmonic era microscopy. Sci. Rep. 7, 1–16 (2017).

    CAS 

    Google Scholar
     

  • Gavgiotaki, E. et al. Third Harmonic Technology microscopy distinguishes malignant cell grade in human breast tissue biopsies. Sci. Rep. 10, 1–13 (2020).


    Google Scholar
     

  • Canioni, L. et al. Imaging of Ca2+ intracellular dynamics with a third-harmonic era microscope. Choose. Lett. 26, 515–517 (2001).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, Y.-C. et al. Third-harmonic era microscopy reveals dental anatomy in historic fossils. Choose. Lett. 40, 1354 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Chang, T. et al. Non-invasive monitoring of cell metabolism and lipid manufacturing in 3D engineered human adipose tissues utilizing label-free multiphoton microscopy. Biomaterials 34, 8607–8616 (2013).

    PubMed 
    CAS 

    Google Scholar
     

  • Débarre, D. et al. Velocimetric third-harmonic era microscopy: micrometer-scale quantification of morphogenetic actions in unstained embryos. Choose. Lett. 29, 2881 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Solar, C. Ok. et al. Greater harmonic era microscopy for developmental biology. J. Struct. Biol. 147, 19–30 (2004).

    PubMed 

    Google Scholar
     

  • Watanabe, T. et al. Characterisation of the dynamic behaviour of lipid droplets within the early mouse embryo utilizing adaptive harmonic era microscopy. BMC Cell Biol. 11(1), 1–11 (2010).


    Google Scholar
     

  • Tserevelakis, G. J. et al. Imaging Caenorhabditis elegans embryogenesis by third-harmonic era microscopy. Micron 41, 444–447 (2010).

    PubMed 
    CAS 

    Google Scholar
     

  • Aviles-Espinosa, R. et al. Cell division stage in C. elegans imaged utilizing third harmonic era microscopy. In Biomedical Optics and 3-D Imaging (2010), Paper BTuD78 BTuD78 (The Optical Society, Washington, 2013).


    Google Scholar
     

  • Yu, M. M. L. et al. In situ evaluation by microspectroscopy reveals triterpenoid compositional patterns inside leaf cuticles of Prunus laurocerasus. Planta 227, 823–834 (2008).

    PubMed 
    CAS 

    Google Scholar
     

  • Prent, N. et al. Purposes of nonlinear microscopy for learning the construction and dynamics in organic programs. Photonic Appl. Nonlinear Choose. Nanophotonics Microw. Photonics 5971, 597106 (2005).


    Google Scholar
     

  • Tokarz, D. et al. Molecular group of crystalline β-carotene in carrots decided with polarization-dependent second and third harmonic era microscopy. J. Phys. Chem. B 118, 3814–3822 (2014).

    PubMed 
    CAS 

    Google Scholar
     

  • Cisek, R. et al. Optical microscopy in photosynthesis. Photosynth. Res. 102, 111–141 (2009).

    PubMed 
    CAS 

    Google Scholar
     

  • Barzda, V. Non-Linear Distinction Mechanisms for Optical Microscopy 35–54 (Springer, Dordrecht, 2008).


    Google Scholar
     

  • Segawa, H. et al. Label-free tetra-modal molecular imaging of residing cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic era, third harmonic era and third-order sum frequency era). Choose. Categorical 20, 9551 (2012).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic era. Appl. Phys. Lett. 70, 922–924 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Boyd, R. W. Nonlinear Optics (Educational Press, New York, 2008).


    Google Scholar
     

  • Iy, Y., En, L. & Vv, T. Refractive index of adipose tissue and lipid droplet measured in extensive spectral and temperature ranges. Appl. Choose. 57, 4839 (2018).


    Google Scholar
     

  • Liu, P. Y. et al. Cell refractive index for cell biology and illness analysis: previous, current and future. Lab Chip 16, 634–644 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • Chen, Y.-C., Hsu, H.-C., Lee, C.-M. & Solar, C.-Ok. Third-harmonic era susceptibility spectroscopy in free fatty acids. J. Biomed. Choose. 20, 095013 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Small, D. M. et al. Label-free imaging of atherosclerotic plaques utilizing third-harmonic era microscopy. Biomed. Choose. Categorical 9, 214 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Bautista, G. et al. Polarized thg microscopy identifies compositionally totally different lipid droplets in mammalian cells. Biophys. J. 107, 2230–2236 (2014).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tserevelakis, G. J. et al. Label-free imaging of lipid depositions in C. elegans utilizing third-harmonic era microscopy. PloS One 9(1), e84431 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddhanta, S., Paidi, S. Ok., Bushley, Ok., Prasad, R. & Barman, I. Exploring morphological and biochemical linkages in fungal development with label-free gentle sheet microscopy and Raman spectroscopy. ChemPhysChem 18, 72–78 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, C., Li, J., Lan, L. & Cheng, J.-X. Quantification of lipid metabolism in residing cells via the dynamics of lipid droplets measured by stimulated Raman scattering imaging. Anal. Chem. 89, 4502–4507 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Brackmann, C. et al. CARS microscopy of lipid shops in yeast: The impression of dietary state and genetic background. J. Raman Spectrosc. 40, 748–756 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, C. & Boppart, S. A. Dynamic signatures of lipid droplets as new markers to quantify mobile metabolic adjustments. Anal. Chem. 92, 15943–15952 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Dong, P. T. et al. Polarization-sensitive stimulated Raman scattering imaging resolves amphotericin B orientation in Candida membrane. Sci. Adv. 7, 1–11 (2021).


    Google Scholar
     

  • Yasuda, M., Takeshita, N. & Shigeto, S. Inhomogeneous molecular distributions and cytochrome varieties and redox states in fungal cells revealed by Raman hyperspectral imaging utilizing multivariate curve resolution-alternating least squares. Anal. Chem. 91, 12501–12508 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Kurian, S. M., Pietro, A. . Di. & Learn, N. D. Reside-cell imaging of conidial anastomosis tube fusion throughout colony initiation in Fusarium oxysporum. PLoS One 13, e0195634 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adomshick, V., Pu, Y. & Veiga-Lopez, A. Automated lipid droplet quantification system for phenotypic evaluation of adipocytes utilizing Cell Profiler. Toxicol. Mech. Strategies 30, 378–387 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jüngst, C., Klein, M. & Zumbusch, A. Lengthy-term stay cell microscopy research of lipid droplet fusion dynamics in adipocytes. J. Lipid Res. 54, 3419–3429 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Exner, T. et al. Lipid droplet quantification based mostly on iterative picture processing. J. Lipid Res. 60, 1333–1344 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics [Developmental Cell 32 (2015) 678–692]. Dev. Cell 32, 678–692 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dejgaard, S. Y. & Presley, J. F. New automated single-cell method for segmentation and quantitation of lipid droplets. J. Histochem. Cytochem. 62, 889–901 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nohe, A. & Petersen, N. O. Picture correlation spectroscopy. Sci. STKE 2007, (2007).

  • Wiseman, P. W., Squier, J. A., Ellisman, M. H. & Wilson, Ok. R. Two-photo picture correlation spectroscopy and picture cross-correlation spectroscopy. J. Microsc. 200, 14–25 (2000).

    PubMed 
    CAS 

    Google Scholar
     

  • Slenders, E. et al. Picture Correlation spectroscopy with second harmonic producing nanoparticles in suspension and in cells. J. Phys. Chem. Lett. 9, 6112–6118 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Bahram, M. & Netherway, T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol. Rev. 46, 1–16 (2022).


    Google Scholar
     

  • Parihar, M. et al. The potential of arbuscular mycorrhizal fungi in C biking: A assessment. Arch. Microbiol. 202, 1581–1596 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Ratledge, C. Regulation of lipid accumulation in oleaginous microorganisms. Biochem. Soc. Trans. 30, A101–A101 (2002).


    Google Scholar
     

  • Cerdá-Olmeda, E. & Avalos, J. Oleaginous fungi: Carotene-rich from Phycomyces. Prog. Lipid Res. 33, 185–192 (1994).


    Google Scholar
     

  • Passoth, V. Lipids of yeasts and filamentous fungi and their significance for biotechnology. Biotechnol. Yeasts Filamentous Fungi https://doi.org/10.1007/978-3-319-58829-2_6 (2017).

    Article 

    Google Scholar
     

  • Mhlongo, S. I. et al. The potential of single-cell oils derived from filamentous fungi as different feedstock sources for biodiesel manufacturing. Entrance. Microbiol. 12, 57 (2021).


    Google Scholar
     

  • Chang, W. et al. Trapping toxins inside lipid droplets is a resistance mechanism in fungi. Sci. Rep. 51(5), 1–11 (2015).


    Google Scholar
     

  • Liu, N. et al. Lipid droplet biogenesis regulated by the FgNem1/Spo7-FgPah1 phosphatase cascade performs important roles in fungal improvement and virulence in Fusarium graminearum. New Phytol. 223, 412–429 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Petschnigg, J. et al. Good fats, important mobile necessities for triacylglycerol synthesis to take care of membrane homeostasis in yeast. J. Biol. Chem. 284, 30981–30993 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Suzuki, M., Shinohara, Y., Ohsaki, Y. & Fujimoto, T. Lipid droplets: Measurement issues. J. Electron Microsc. 60, S101–S116 (2011).

    CAS 

    Google Scholar
     

  • Nand, Ok. & Mohrotra, B. S. Mycological fats manufacturing in India. II. Impact of hydrogen-ion focus on fats synthesis. Sydowia 24, 144–152 (1971).


    Google Scholar
     

  • Pollack, J. Ok., Harris, S. D. & Marten, M. R. Autophagy in filamentous fungi. Fungal Genet. Biol. 46, 1–8 (2009).

    PubMed 
    CAS 

    Google Scholar
     

  • Jaishy, B. & Abel, E. D. Lipids, lysosomes, and autophagy. J. Lipid Res. 57, 1619–1635 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Petersen, N. O., Höddelius, P. L., Wiseman, P. W., Seger, O. & Magnusson, Ok. E. Quantitation of membrane receptor distributions by picture correlation spectroscopy: Idea and utility. Biophys. J. 65, 1135–1146 (1993).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bukara, Ok. et al. Mapping of hemoglobin in erythrocytes and erythrocyte ghosts utilizing two photon excitation fluorescence microscopy. J. Biomed. Choose. 22, 026003 (2017).

    ADS 

    Google Scholar
     

  • Despotović, S. Z. et al. Altered group of collagen fibers within the uninvolved human colon mucosa 10 cm and 20 cm away from the malignant Tumor. Sci. Rep. 101(10), 1–11 (2020).


    Google Scholar
     

  • Huang, S., Heikal, A. A. & Webb, W. W. Two-photon fluorescence spectroscopy and microscopy of NAD (P) H and flavoprotein. Biophys. J. 82(5), 2811–2825 (2002).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Greenspan, P., Mayer, E. P. & Fowler, S. D. Nile pink: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100, 965 (1985).

    PubMed 
    CAS 

    Google Scholar
     

  • Yi, Y.-H. et al. Lipid droplet sample and nondroplet-like construction in two fats mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy. J. Biomed. Choose. 19, 011011 (2013).


    Google Scholar
     

  • Chen, Y. et al. Nitrogen-starvation triggers mobile accumulation of triacylglycerol in Metarhizium robertsii. Fungal Biol. 122, 410–419 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Weng, L. C. et al. Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates remoted from Aiptasia pulchella. Sci. Rep. 4, 1–8 (2014).


    Google Scholar
     

  • Aguilar, L. R. et al. Lipid droplets accumulation and different biochemical adjustments induced within the fungal pathogen Ustilago maydis underneath nitrogen-starvation. Arch. Microbiol. 199, 1195–1209 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Rocheleau, J. V., Wiseman, P. W. & Petersen, N. O. Isolation of vivid mixture fluctuations in a multipopulation picture correlation spectroscopy system utilizing depth subtraction. Biophys. J. 84, 4011–4022 (2003).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Olzmann, J. A. & Carvalho, P. (2018) Dynamics and features of lipid droplets. Nat. Rev. Mol. Cell Biol. 203(20), 137–155 (2018).


    Google Scholar
     

  • Yu, Y. et al. The function of lipid droplets in Mortierella alpina getting older revealed by integrative subcellular and whole-cell proteome evaluation. Sci. Rep. 71(7), 1–12 (2017).


    Google Scholar
     

  • Bonfante, P. & Venice, F. Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biol. Rev. 34, 100–113 (2020).


    Google Scholar
     

  • Smith, S. & Learn, D. Mycorrhizal Symbiosis (Educational Press, New York, 2008).


    Google Scholar
     

  • Luginbuehl, L. H. et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175–1178 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Vegetation switch lipids to maintain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1173 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Keymer, A. et al. Lipid switch from vegetation to arbuscular mycorrhiza fungi. Elife 6, e29107 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deka, D., Sonowal, S., Chikkaputtaiah, C. & Velmurugan, N. Symbiotic associations: Key elements that decide physiology and lipid accumulation in oleaginous microorganisms. Entrance. Microbiol. 11, 555312 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Athenaki, M. et al. Lipids from yeasts and fungi: Physiology, manufacturing and analytical concerns. J. Appl. Microbiol. 124, 336–367 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Fujita, Ok. & Smith, N. I. Label-free molecular imaging of residing cells. Mol. Cells OS 530–535 (2008).

  • Knaus, H., Blab, G. A., van Jerre Veluw, G., Gerritsen, H. C. & Wösten, H. A. B. Label-free fluorescence microscopy in fungi. Fungal Biol. Rev. 27, 60–66 (2013).


    Google Scholar
     

  • Borile, G., Sandrin, D., Filippi, A., Anderson, Ok. I. & Romanato, F. Label-free multiphoton microscopy: Way more than fancy pictures. Int. J. Mol. Sci. 22, 2657 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Martins, A. S., Martins, I. C. & Santos, N. C. Strategies for lipid droplet biophysical characterization in flaviviridae infections. Entrance. Microbiol. 9, 1951 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nile Purple. Obtainable at: https://www.thermofisher.com/order/catalog/product/N1142.

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments