Friday, September 16, 2022
HomeMicrobiologyInterference and co-existence of staphylococci and Cutibacterium acnes throughout the wholesome human...

Interference and co-existence of staphylococci and Cutibacterium acnes throughout the wholesome human pores and skin microbiome


  • Grice, E. A. & Segre, J. A. The pores and skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Kloos, W. E. & Schleiferi, Ok. H. Isolation and characterization of Staphylococci from human pores and skin. Int. J. Syst. Bacteriol. 25, 62–79 (1975).

    CAS 
    Article 

    Google Scholar
     

  • Kloos, W. E. & Musselwhite, M. S. Distribution and persistence of Staphylococcus and Micrococcus species and different cardio micro organism on human pores and skin. Appl. Microbiol. 30, 381–385 (1975).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Oh, J. et al. Biogeography and individuality form perform within the human pores and skin metagenome. Nature 514, 59–64 (2014).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Oh, J. et al. Temporal stability of the human pores and skin microbiome. Cell 165, 854–866 (2016).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. Host-specific evolutionary and transmission dynamics form the useful diversification of Staphylococcus epidermidis in human pores and skin. Cell 180, 454–470 e418 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Bruggemann, H., Salar-Vidal, L., Gollnick, H. P. M. & Lood, R. A Janus-faced bacterium: host-beneficial and -detrimental roles of Cutibacterium acnes. Entrance. Microbiol. 12, 673845 (2021).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Paetzold, B. et al. Pores and skin microbiome modulation induced by probiotic options. Microbiome 7, 95 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Stacy, A. & Belkaid, Y. Microbial guardians of pores and skin well being. Science 363, 227–228 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Brown, M. M. & Horswill, A. R. Staphylococcus epidermidis—pores and skin good friend or foe? PLoS Pathog. 16, e1009026 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Luqman, A. et al. Hint amines produced by pores and skin micro organism speed up wound therapeutic in mice. Commun. Biol. 3, 277 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Luqman, A. et al. The neuromodulator-encoding sadA gene is extensively distributed within the human pores and skin microbiome. Entrance. Microbiol. 11, 573679 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Conlan, S. et al. Staphylococcus epidermidis pan-genome sequence evaluation reveals variety of pores and skin commensal and hospital infection-associated isolates. Genome Biol. 13, R64 (2012).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Espadinha, D. et al. Distinct phenotypic and genomic signatures underlie contrasting pathogenic potential of Staphylococcus epidermidis clonal lineages. Entrance. Microbiol. 10, 1971 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Meric, G. et al. Ecological overlap and horizontal gene switch in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biol. Evol. 7, 1313–1328 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. Y. H. et al. International unfold of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 3, 1175–1185 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Mansson, E., Hellmark, B., Sundqvist, M. & Soderquist, B. Sequence kinds of Staphylococcus epidermidis related to prosthetic joint infections are usually not current within the laminar airflow throughout prosthetic joint surgical procedure. APMIS 123, 589–595 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lomholt, H. B. & Kilian, M. Inhabitants genetic evaluation of Propionibacterium acnes identifies a subpopulation and epidemic clones related to pimples. PLoS ONE 5, e12277 (2010).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDowell, A., Nagy, I., Magyari, M., Barnard, E. & Patrick, S. The opportunistic pathogen Propionibacterium acnes: insights into typing, human illness, clonal diversification and CAMP issue evolution. PLoS ONE 8, e70897 (2013).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Scholz, C. F., Jensen, A., Lomholt, H. B., Bruggemann, H. & Kilian, M. A novel high-resolution single locus sequence typing scheme for combined populations of Propionibacterium acnes in vivo. PLoS ONE 9, e104199 (2014).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dagnelie, M. A. et al. Lower in variety of Propionibacterium acnes phylotypes in sufferers with extreme pimples on the again. Acta Derm. Venereol. 98, 262–267 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lomholt, H. B., Scholz, C. F. P., Bruggemann, H., Tettelin, H. & Kilian, M. A comparative research of Cutibacterium (Propionibacterium) acnes clones from pimples sufferers and wholesome controls. Anaerobe 47, 57–63 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • McDowell, A. et al. An expanded multilocus sequence typing scheme for Propionibacterium acnes: investigation of ‘pathogenic’, ‘commensal’ and antibiotic resistant strains. PLoS ONE 7, e41480 (2012).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • McDowell, A. et al. A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of kind I cell surface-associated antigens. Microbiology 157, 1990–2003 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nakase, Ok., Hayashi, N., Akiyama, Y., Aoki, S. & Noguchi, N. Antimicrobial susceptibility and phylogenetic evaluation of Propionibacterium acnes remoted from pimples sufferers in Japan between 2013 and 2015. J. Dermatol. 44, 1248–1254 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nakase, Ok. et al. Characterization of pimples sufferers carrying clindamycin-resistant Cutibacterium acnes: a Japanese multicenter research. J. Dermatol. 47, 863–869 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • O’Neill, A. M. et al. Identification of a human pores and skin commensal bacterium that selectively kills Cutibacterium acnes. J. Make investments. Dermatol. 140, 1619–1628 (2020).

  • Christensen, G. J. et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic foundation. BMC Genomics 17, 152 (2016).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Staphylococcus epidermidis within the human pores and skin microbiome mediates fermentation to inhibit the expansion of Propionibacterium acnes: implications of probiotics in pimples vulgaris. Appl. Microbiol. Biotechnol. 98, 411–424 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ahle, C. M. et al. Staphylococcus saccharolyticus: an missed human pores and skin colonizer. Microorganisms 8, 1105 (2020).

  • Ahle, C. M. et al. Comparability of three amplicon sequencing approaches to find out staphylococcal populations on human pores and skin. BMC Microbiol. 21, 221 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Hanssen, A. M. et al. Localization of Staphylococcus aureus in tissue from the nasal vestibule in wholesome carriers. BMC Microbiol. 17, 89 (2017).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohde, H. et al. Detection of virulence-associated genes not helpful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J. Clin. Microbiol. 42, 5614–5619 (2004).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Gotz, F., Perconti, S., Popella, P., Werner, R. & Schlag, M. Epidermin and gallidermin: Staphylococcal lantibiotics. Int. J. Med. Microbiol. 304, 63–71 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Byrd, A. L., Belkaid, Y. & Segre, J. A. The human pores and skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Otto, M. Staphylococcus epidermidis—the ‘unintended’ pathogen. Nat. Rev. Microbiol. 7, 555–567 (2009).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • McLaughlin, J. et al. Propionibacterium acnes and pimples vulgaris: new insights from the mixing of inhabitants genetic, multi-omic, biochemical and host-microbe research. Microorganisms 7, 128 (2019).

  • Mayslich, C., Grange, P. A. & Dupin, N. Cutibacterium acnes as an opportunistic pathogen: an replace of its virulence-associated elements. Microorganisms 9, 303 (2021).

  • Cobian, N., Garlet, A., Hidalgo-Cantabrana, C. & Barrangou, R. Comparative genomic analyses and CRISPR-Cas characterization of Cutibacterium acnes present insights into genetic variety and typing purposes. Entrance. Microbiol. 12, 758749 (2021).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Barnard, E. et al. Porphyrin manufacturing and regulation in cutaneous propionibacteria. mSphere 5, e00793-19 (2020).

  • Spittaels, Ok. J. et al. Porphyrins produced by acneic Cutibacterium acnes strains activate the inflammasome by inducing Ok(+) leakage. iScience 24, 102575 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Dagnelie, M. A. et al. Cutibacterium acnes phylotypes variety loss: a set off for pores and skin inflammatory course of. J. Eur. Acad. Dermatol Venereol. 33, 2340–2348 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nakatsuji, T. et al. Antimicrobials from human pores and skin commensal micro organism shield in opposition to Staphylococcus aureus and are poor in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

  • Leyden, J. J., Marples, R. R. & Kligman, A. M. Staphylococcus aureus within the lesions of atopic dermatitis. Br. J. Dermatol. 90, 525–530 (1974).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tauber, M. et al. Staphylococcus aureus density on lesional and nonlesional pores and skin is strongly related to illness severity in atopic dermatitis. J. Allergy Clin. Immunol. 137, 1272–1274 e1273 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kellner, R. et al. Gallidermin: a brand new lanthionine-containing polypeptide antibiotic. Eur. J. Biochem. 177, 53–59 (1988).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vuong, C. et al. Regulated expression of pathogen-associated molecular sample molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capability and manufacturing of phenol-soluble modulins. Cell Microbiol. 6, 753–759 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Queck, S. Y. et al. RNAIII-independent goal gene management by the agr quorum-sensing system: perception into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 32, 150–158 (2008).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Olson, M. E. et al. Staphylococcus epidermidis agr quorum-sensing system: sign identification, cross discuss, and significance in colonization. J. Bacteriol. 196, 3482–3493 (2014).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, P. et al. Impact of co-inhabiting coagulase damaging Staphylococci on S. aureus agr quorum sensing, host issue binding, and biofilm formation. Entrance. Microbiol. 10, 2212 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Williams, M. R. et al. Quorum sensing between bacterial species on the pores and skin protects in opposition to epidermal harm in atopic dermatitis. Sci. Transl. Med. 11, eaat8329 (2019).

  • Todd, O. A. et al. Candida albicans augments Staphylococcus aureus virulence by partaking the staphylococcal agr quorum sensing system. mBio 10, e00910-19 (2019).

  • Ebner, P. et al. Lantibiotic manufacturing is a burden for the manufacturing staphylococci. Sci. Rep. 8, 7471 (2018).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rendboe, A. Ok. et al. The Epidome—a species-specific strategy to evaluate the inhabitants construction and heterogeneity of Staphylococcus epidermidis colonization and an infection. BMC Microbiol. 20, 362 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome information science utilizing QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: Excessive-resolution pattern inference from Illumina amplicon information. Nat. Strategies 13, 581–583 (2016).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. phyloseq: an R bundle for reproducible interactive evaluation and graphics of microbiome census information. PLoS ONE 8, e61217 (2013).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Wickham H. ggplot2: Elegant Graphics for Information Evaluation (Springer-Verlag New York, 2009).

  • Warnes GRB, B. et al. gplots: Numerous R Programming Instruments for Plotting Information (2020).

  • Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for speedy core-genome alignment and visualization of 1000’s of intraspecific microbial genomes. Genome Biol. 15, 524 (2014).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomsen, M. C. et al. A bacterial evaluation platform: an built-in system for analysing bacterial entire genome sequencing information for scientific diagnostics and surveillance. PLoS ONE 11, e0157718 (2016).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an internet instrument for phylogenetic tree show and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Eren, A. M. et al. Neighborhood-led, built-in, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon offers quick and bias-aware quantification of transcript expression. Nat. Strategies 14, 417–419 (2017).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates enhance gene-level inferences. F1000Res 4, 1521 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence rely information: eradicating the noise and preserving massive variations. Bioinformatics 35, 2084–2092 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wei, T. & Simko, V. R bundle ‘corrplot’: Visualization of a Correlation Matrix. model 0.90 (2021).

  • Lin, H. & Peddada, S. D. Evaluation of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Kolde, R. pheatmap: Fairly Heatmaps. model 1.0.12. (2019).

  • Blighe, Ok., Rana, S. & Lewis, M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. model 1.8.0 (2020).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments