Tuesday, November 1, 2022
HomeMicrobiologyImpression of host age on viral and bacterial communities in a waterbird...

Impression of host age on viral and bacterial communities in a waterbird inhabitants


  • Woolhouse MEJ, Gowtage-Sequeria S. Host vary and rising and reemerging pathogens. Emerg Infect Dis. 2005;11:1842–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, et al. World hotspots and correlates of rising zoonotic ailments. Nat Commun. 2017;8:1–10.

    CAS 

    Google Scholar
     

  • Van Kerkhove MD, Ly S, Holl D, Guitian J, Mangtani P, Ghani AC, et al. Frequency and patterns of contact with home poultry and potential danger of H5N1 transmission to people dwelling in rural Cambodia. Influenza Different Respir Viruses. 2008;2:155–63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaythorpe KAM, Hamlet A, Cibrelus L, Garske T, Ferguson NM. The impact of local weather change on yellow fever illness burden in Africa. eLife. 2020;9:1–27.


    Google Scholar
     

  • Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, et al. Pathogen spillover throughout land conversion. Ecol Lett. 2018;21:471–83.

    PubMed 

    Google Scholar
     

  • Gog J, Woodroffe R, Swinton J. Illness in endangered metapopulations: The significance of different hosts. Proc R Soc B Biol Sci. 2002;269:671–6.


    Google Scholar
     

  • Jones BA, Grace D, Kock R, Alonso S, Rushton J, Stated MY, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci USA. 2013;110:8399–404.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White LA, Forester JD, Craft ME. Illness outbreak thresholds emerge from interactions between motion habits, panorama construction, and epidemiology. Proc Natl Acad Sci USA. 2018;115:7374–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altizer S, Bartel R, Han BA. Animal migration and infectious illness danger. Science. 2011;331:296–302.

    CAS 
    PubMed 

    Google Scholar
     

  • Ludwig SC, Roos S, Bubb D, Baines D. Lengthy-term developments in abundance and breeding success of pink grouse and hen harriers in relation to altering administration of a Scottish grouse moor. Wildl Biol. 2017;2017:wlb.00246.


    Google Scholar
     

  • Newton I. Climate-related mass-mortality occasions in migrants. Ibis. 2007;149:453–67.


    Google Scholar
     

  • Ropert-Coudert Y, Kato A, Meyer X, Pellé M, MacIntosh AJJ, Angelier F, et al. An entire breeding failure in an Adélie penguin colony correlates with uncommon and excessive environmental occasions. Ecography. 2015;38:111–3.


    Google Scholar
     

  • Newmark WD, Stanley TR. Habitat fragmentation reduces nest survival in an Afrotropical fowl group in a biodiversity hotspot. Proc Natl Acad Sci USA. 2011;108:11488–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuyttens FaM, Macdonald DW, Rogers LM, Cheeseman CL, Roddam AW. Comparative research on the implications of culling badgers (Meles meles) on biometrics, inhabitants dynamics and motion. J Anim Ecol. 2000;69:567–80.


    Google Scholar
     

  • Frafjord Ok. Affect of reproductive standing: Residence vary dimension in water voles (Arvicola amphibius). PLoS ONE. 2016;11:1–13.


    Google Scholar
     

  • Begg CM, Begg KS, Du Toit JT, Mills MGL. Spatial group of the honey badger Mellivora capensis within the southern Kalahari: Residence-range dimension and motion patterns. J Zool. 2005;265:23–35.


    Google Scholar
     

  • Bronikowski AM, Cords M, Alberts SC, Altmann J, Brockman DK, Fedigan LM, et al. Feminine and male life tables for seven wild primate species. Sci Knowledge. 2016;3:1–8.


    Google Scholar
     

  • Mitchell GW, Woodworth BK, Taylor PD, Norris DR. Automated telemetry reveals age particular variations in flight length and pace are pushed by wind situations in a migratory songbird. Mov Ecol. 2015;3:1–13.


    Google Scholar
     

  • Frankish CK, Manica A, Phillips RA. Results of age on foraging habits in two intently associated albatross species. Mov Ecol. 2020;8:1–17.


    Google Scholar
     

  • Tirpak JM, Giuliano WM, Allen TJ, Bittner S, Edwards JW, Friedhof S, et al. Ruffed grouse-habitat choice within the central and southern Appalachians. Ecol Manag. 2010;260:1525–38.


    Google Scholar
     

  • Zhu WW, Garber PA, Bezanson M, Qi XG, Li BG. Age- and sex-based patterns of positional habits and substrate utilization within the golden snub-nosed monkey (Rhinopithecus roxellana). Am J Primatol. 2015;77:98–108.

    PubMed 

    Google Scholar
     

  • Tian H, Yu P, Bjørnstad ON, Cazelles B, Yang J, Tan H, et al. Anthropogenically pushed environmental adjustments shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLOS Pathog. 2017;13:e1006198.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • George DB, Webb CT, Farnsworth ML, O’Shea TJ, Bowen RA, Smith DL, et al. Host and viral ecology decide bat rabies seasonality and upkeep. Proc Natl Acad Sci USA. 2011;108:10208–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Dijk JG, Verhagen JH, Wille M, Waldenström J. Host and virus ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol. 2018;28:26–36.

    PubMed 

    Google Scholar
     

  • Chong R, Shi M, Grueber CE, Holmes EC, Hogg CJ, Belov Ok, et al. Fecal Viral Range of Captive and Wild Tasmanian Devils Characterised Utilizing Virion-Enriched Metagenomics and Metatranscriptomics. J Virol. 2019;93:e00205–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • François S, Pybus OG. In the direction of an understanding of the avian virome. J Gen Virol. 2020;101:785–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, et al. Patterns of seasonality and group membership characterize the intestine microbiota in a longitudinal research of untamed Verreaux’s sifakas (Propithecus verreauxi). Ecol Evol. 2017;7:5732–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aivelo T, Laakkonen J, Jernvall J. Inhabitants-and individual-level dynamics of the intestinal microbiota of a small primate. Appl Environ Microbiol. 2016;82:3537–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Dongen WFD, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, et al. Age-related variations within the cloacal microbiota of a wild fowl species. BMC Ecol. 2013;13:11.

  • Cleaveland S, Laurenson MK, Taylor LH. Illnesses of people and their home mammals: Pathogen traits, host vary and the chance of emergence. Philos Trans R Soc B Biol Sci. 2001;356:991–9.

    CAS 

    Google Scholar
     

  • Wille M, Shi M, Harm AC, Klaassen M, Holmes EC. RNA virome abundance and variety is related to host age in a fowl species. Virology. 2021;561:98–106.

    CAS 
    PubMed 

    Google Scholar
     

  • Negrey JD, Thompson ME, Langergraber KE, Machanda ZP, Mitani JC, Muller MN, et al. Demography, life-history trade-offs, and the gastrointestinal virome of untamed chimpanzees. Philos Trans R Soc B Biol Sci. 2020;375:20190613.


    Google Scholar
     

  • Hill SC, Manvell RJ, Schulenburg B, Shell W, Wikramaratna PS, Perrins C, et al. Antibody responses to avian influenza viruses in wild birds broaden with age. Proc R Soc B Biol Sci. 2016;283:20162159.


    Google Scholar
     

  • Perrins CM, Ogilvie MA. A research of the Abbotsbury mute swans (Cygnus olor). Wildfowl. 1981;32:35–47.


    Google Scholar
     

  • Perrins CM, McCleery RH, Ogilvie MA. A research of the breeding Mute Swans Cygnus olor at Abbotsbury. Wildfowl. 1994;45:1–14.


    Google Scholar
     

  • Perrins C. Survival charges of younger mute swans Cygnus olor. Wildfowl Suppl. 1991;45:95–103.


    Google Scholar
     

  • McCleery RH, Perrins C, Wheeler D, Groves S. Inhabitants construction, survival charges and productiveness of mute swans breeding in a colony at Abbotsbury, Dorset, England. Waterbirds Waterbird Soc. 2002;25:201.


    Google Scholar
     

  • Matrozis R A 30-year (1988–2017) research of Mute Swans Cygnus olor in Riga, Latvia. Wildfowl. 2019;14:164–77.

  • Charmantier A, Perrins C, McCleery RH, Sheldon BC. Quantitative genetics of age at copy in wild swans: Help for antagonistic pleiotropy fashions of senescence. Proc Natl Acad Sci USA. 2006;103:6587–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill SC, Hansen R, Watson S, Coward V, Russell C, Cooper J, et al. Comparative micro-epidemiology of pathogenic avian influenza virus outbreaks in a wild fowl inhabitants. Philos Trans R Soc B Biol Sci. 2019;374:20180259.

  • Cotten M, Oude Munnink B, Canuti M, Deijs M, Watson SJ, Kellam P, et al. Full genome virus detection in fecal samples utilizing delicate nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm. PLoS ONE. 2014;9:e93269.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Growth R, Sol CJA, Salimans MMM, Janses CL, Wertheim Van Dillen PME, Van Der Noordaa J. Fast and easy methodology for purification of nucleic acids R. J Clin Microbiol. 1990;28:495–503.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endoh D, Mizutani T, Kirisawa R, Maki Y, Saito H, Kon Y, et al. Species-independent detection of RNA virus by representational distinction evaluation utilizing non-ribosomal hexanucleotides for reverse transcription. Nucleic Acids Res. 2005;33:1–11.


    Google Scholar
     

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB. 2011;17:10–12.


    Google Scholar
     

  • Zerbino DR, Birney E. Velvet: algorithms for de novo quick learn meeting utilizing de Bruijn graphs. Genome Res. 2008;18:821–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink B, Xie C, Huson DH. Quick and delicate protein alignment utilizing DIAMOND. Nat Strategies. 2014;12:59–60.

    PubMed 

    Google Scholar
     

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Primary native alignment search device. J Mol Biol. 1990;215:403–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Langmead B Aligning quick sequencing reads with Bowtie. Curr Protoc Bioinforma. 2010; Chapter 11: Unit 11.7.

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Primary: an built-in and extendable desktop software program platform for the group and evaluation of sequence information. Bioinforma Oxf Engl. 2012;28:1647–9.


    Google Scholar
     

  • Katoh Ok, Misawa Ok, Kuma Ok, Miyata T. MAFFT: a novel methodology for fast a number of sequence alignment based mostly on quick Fourier rework. Nucleic Acids Res. 2002;30:3059–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh Ok, Standley DM. MAFFT a number of sequence alignment software program model 7: Enhancements in efficiency and value. Mol Biol Evol. 2013;30:772–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar RC. MUSCLE: a number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 2004;32:1792–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muhire BM, Varsani A, Martin DP SDT: A virus classification device based mostly on pairwise sequence alignment and id calculation. PLoS ONE. 2014;9:e108277.

  • Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: quick number of best-fit fashions of protein evolution. Bioinforma Oxf Engl. 2011;27:1164–5.

    CAS 

    Google Scholar
     

  • Stamatakis A. RAxML model 8: A device for phylogenetic evaluation and post-analysis of huge phylogenies. Bioinformatics. 2014;30:1312–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapoor A, Simmonds P, Lipkin WI, Zaidi S, Delwart E. Use of nucleotide composition evaluation to deduce hosts for 3 novel picorna-like viruses. J Virol. 2010;84:10322–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wooden DE, Salzberg SL Kraken: Ultrafast metagenomic sequence classification utilizing actual alignments. Genome Biol. 2014;15:R46.

  • Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics information. PeerJ Comput Sci. 2017;3:e104.


    Google Scholar
     

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Solar Y, et al. Ribosomal Database Venture: Knowledge and instruments for prime throughput rRNA evaluation. Nucleic Acids Res. 2014;42:633–42.


    Google Scholar
     

  • R Core Crew. R: A Language and Surroundings for Statistical Computing. 2019. R Basis for Statistical Computing, Vienna, Austria.

  • RStudio Crew. RStudio: Built-in Growth for R. 2015. Boston, MA, USA.

  • Dixon P. VEGAN, a bundle of R features for group ecology. J Veg Sci. 2003;14:927–30.


    Google Scholar
     

  • Anderson MJ. A brand new methodology for non-parametric multivariate evaluation of variance. Austral Ecol. 2001;26:32–46.


    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false discovery charge: a sensible and highly effective strategy to a number of testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.


    Google Scholar
     

  • Benjamini Y, Yekutieli D. The management of the false discovery charge in a number of testing below dependency. Ann Stat. 2001;29:1165–88.


    Google Scholar
     

  • Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, et al. The rooster gastrointestinal microbiome. FEMS Microbiol Lett. 2014;360:100–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Waite DW, Taylor MW. Characterizing the avian intestine microbiota: Membership, driving influences, and potential perform. Entrance Microbiol. 2014;5:1–12.


    Google Scholar
     

  • Waite DW, Taylor MW. Exploring the avian intestine microbiota: Present developments and future instructions. Entrance Microbiol. 2015;6:1–12.


    Google Scholar
     

  • Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, et al. ICTV virus taxonomy profile: Picornaviridae. J Gen Virol. 2017;98:2421–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger AM, Hughes J, et al. ICTV virus taxonomy profile: Parvoviridae. J Gen Virol. 2019;100:367–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosch A, Guix S, Krishna N, Méndez E, Monroe SS, Pantin-Jackwood M, et al. Astroviridae. In: King A, Adams M, Carstens E, Lefkowitz E (eds). Virus taxonomy. Classification and nomenclature of viruses: ninth report of the Worldwide Committee on the Taxonomy of Viruses. 2011. Elsevier, London, pp 953-9.

  • Risely A. Making use of the core microbiome to know host–microbe methods. J Anim Ecol. 2020;89:1549–58.

    PubMed 

    Google Scholar
     

  • Piepenbring AK, Enderlein D, Herzog S, Kaleta EF, Heffels-Redmann U, Ressmeyer S, et al. Pathogenesis of avian bornavirus in experimentally contaminated Cockatiels. Emerg Infect Dis. 2012;18:234–41.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzil AP, Blinzinger Ok, Mayr A. Persistent Borna virus an infection in grownup hamsters. Arch Für Gesamt Virusforsch. 1973;40:52–57.

    CAS 

    Google Scholar
     

  • Heffels-Redmann U, Enderlein D, Herzog S, Piepenbring A, Bürkle M, Neumann D, et al. Comply with-Up Investigations on Totally different Programs of Pure Avian Bornavirus Infections in Psittacines. Avian Dis. 2012;56:153–9.

    PubMed 

    Google Scholar
     

  • Rubbenstroth D, Brosinski Ok, Rinder M, Olbert M, Kaspers B, Korbel R, et al. No contact transmission of avian bornavirus in experimentally contaminated cockatiels (Nymphicus hollandicus) and home canaries (Serinus canaria forma domestica). Vet Microbiol. 2014;172:146–56.

    PubMed 

    Google Scholar
     

  • Olsen I The Household Fusobacteriaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Firmicutes and Tenericutes, 4th ed. 2014. pp 109-32.

  • Imhoff JF The Household Chlorobiaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Different Main Lineages of Micro organism and The Archaea, 4th ed. 2014. pp 501-14.

  • Cho JC The Household Lentisphaeraceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Different Main Lineages of Micro organism and The Archaea, 4th ed. 2014. pp 705-10.

  • Karami A, Sarshar M, Ranjbar R, Zanjani RS The Phylum Spirochaetaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Different Main Lineages of Micro organism and The Archaea, 4th ed. 2014. pp 915-29.

  • McBride MJ The Household Flavobacteriaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Different Main Lineages of Micro organism and The Archaea, 4th ed. 2014. pp 643-76.

  • Van Dijk JGB, Hoye BJ, Verhagen JH, Nolet BA, Fouchier RAM, Klaassen M. Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. J Anim Ecol. 2014;83:266–75.

    PubMed 

    Google Scholar
     

  • Chevalier V, Marsot M, Molia S, Rasamoelina H, Rakotondravao R, Pedrono M, et al. Serological proof of West Nile and Usutu viruses circulation in home and wild birds in wetlands of Mali and Madagascar in 2008. Int J Environ Res Public Well being. 2020;17:1998.

  • Man, JS Turkey Viral Hepatitis. Illnesses of Poultry, twelfth Version. 2008. Wiley Blackwell, pp 426-30.

  • Davies ZG, Fuller RA, Dallimer M, Loram A, Gaston KJ. Family components influencing participation in fowl feeding exercise: a nationwide scale evaluation. PLOS ONE. 2012;7:e39692.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shutt JD, Trivedi UH, Nicholls JA. Faecal metabarcoding reveals pervasive long-distance impacts of backyard fowl feeding. Proc R Soc B Biol Sci. 2021;288:20210480.


    Google Scholar
     

  • Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome analysis. mSystems. 2019;4:e00186–19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments