Tuesday, September 6, 2022
HomeMicrobiologyGrowth of an attenuated vaccine in opposition to Koi Herpesvirus Illness (KHVD)...

Growth of an attenuated vaccine in opposition to Koi Herpesvirus Illness (KHVD) appropriate for oral administration and immersion


  • FAO. FAO Yearbook. Fishery and Aquaculture Statistics 2019/FAO annuaire. Statistiques des pêches et de l’aquaculture 2019/FAO anuario. Estadísticas de pesca y acuicultura 2019, (2021).

  • Hedrick, R. P. et al. A herpesvirus related to mass mortality of juvenile and grownup koi, a pressure of frequent carp. J. Aquat. Anim. Well being 12, 44–57 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Waltzek, T. B. et al. Koi herpesvirus represents a 3rd cyprinid herpesvirus (CyHV-3) within the household Herpesviridae. J. Gen. Virol. 86, 1659–1667 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eide, Ok. E. et al. Investigation of koi herpesvirus latency in koi. J. Virol. 85, 4954–4962 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bergmann, S. M. & Kempter, J. Detection of koi herpesvirus (KHV) after re-activation in persistently contaminated frequent carp (Cyprinus carpio L.) utilizing non-lethal sampling strategies. Bull. Eur. Assoc. Fish. Pathologists 31, 8 (2011).


    Google Scholar
     

  • Bergmann, S. M., Kempter, J. & Fichtner, D. How host particular is an infection with koi herpesvirus (KHV) for actual? Isr. J. Aquac. – Bamidgeh 61, 1 (2009).


    Google Scholar
     

  • Bergmann, S. M. et al. Detection of koi herpes virus (KHV) genome in apparently wholesome fis. Bull. Eur. Assoc. Fish. Pathologists 29, 7 (2009).


    Google Scholar
     

  • Hedrick, R. P. et al. Preliminary Isolation and Characterization of a Herpes-like Virus (KHV) from Koi and Widespread Carp. Bulletin of Fisheries Analysis Company (2005).

  • Ronen, A. et al. Environment friendly vaccine in opposition to the virus inflicting a deadly illness in cultured Cyprinus carpio. Vaccine 21, 4677–4684 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yasumoto, S., Kuzuya, Y., Yasuda, M., Yoshimura, T. & Miyazaki, T. Oral immunization of frequent carp with a liposome vaccine fusing koi herpesvirus antigen. Fish. Pathol. 41, 141–145 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Weber, E. P. third et al. Efficacy and security of a modified-live cyprinid herpesvirus 3 vaccine in koi (Cyprinus carpio koi) for prevention of koi herpesvirus illness. Am. J. Vet. Res. 75, 899–904 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Meeusen, E. N., Walker, J., Peters, A., Pastoret, P. P. & Jungersen, G. Present standing of veterinary vaccines. Clin. Microbiol. Rev. 20, 489–510 (2007). desk of contents.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boutier, M. et al. Rational improvement of an attenuated recombinant cyprinid herpesvirus 3 vaccine utilizing prokaryotic mutagenesis and in vivo bioluminescent imaging. PLoS Pathog. 11, e1004690 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schroder, L. et al. Era of a possible koi herpesvirus stay vaccine by simultaneous deletion of the viral thymidine kinase and dUTPase genes. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001148 (2018).

  • Schroder, L. et al. Characterization of gene deletion mutants of Cyprinid herpesvirus 3 (koi herpesvirus) missing the immunogenic envelope glycoproteins pORF25, pORF65, pORF148 and pORF149. Virus Res. 261, 21–30 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Protecting immunity in opposition to CyHV-3 an infection through totally different prime-boost vaccination regimens utilizing CyHV-3 ORF131-based DNA/protein subunit vaccines in carp Cyprinus carpio var. Jian. Fish. shellfish Immunol. 98, 342–353 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Michel, B. et al. The genome of cyprinid herpesvirus 3 encodes 40 proteins integrated in mature virions. J. Gen. Virol. 91, 452–462 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ouyang, P. et al. The IL-10 homologue encoded by cyprinid herpesvirus 3 is important neither for viral replication in vitro nor for virulence in vivo. Vet. Res. 44, 53 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Adamek, M. et al. Interplay between sort I interferon and Cyprinid herpesvirus 3 in two genetic traces of frequent carp Cyprinus carpio. Dis. Aquat. Org. 111, 107–118 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Adamek, M. et al. Interferon sort I responses to virus infections in carp cells: In vitro research on Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. Fish. shellfish Immunol. 33, 482–493 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adamek, M. et al. Biology and host response to Cyprinid herpesvirus 3 an infection in frequent carp. Dev. Comp. Immunol. 43, 151–159 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adamek, M. et al. Cyprinid herpesvirus 3 an infection disrupts the pores and skin barrier of frequent carp (Cyprinus carpio L.). Vet. Microbiol. 162, 456–470 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raj, V. S. et al. Pores and skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Vet. Res. 42, 92 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sunarto, A. & McColl, Ok. A. Expression of immune-related genes of frequent carp throughout cyprinid herpesvirus 3 an infection. Dis. Aquat. Org. 113, 127–135 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Aoki, T. et al. Genome sequences of three koi herpesvirus isolates representing the increasing distribution of an rising illness threatening koi and customary carp worldwide. J. Virol. 81, 5058–5065 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao, Y. et al. Genomic and biologic comparisons of cyprinid herpesvirus 3 strains. Vet. Res. 49, 40 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Neukirch, M., Bottcher, Ok. & Bunnajirakul, S. Isolation of a virus from koi with altered gills. Bull. Eur. Assoc. Fish. Pathologists 19, 4 (1999).


    Google Scholar
     

  • Klafack, S. et al. Genetic variability of koi herpesvirus in vitro-a pure occasion? Entrance Microbiol. 8, 982 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klafack, S. et al. Cyprinid herpesvirus 3 evolves in vitro by means of an assemblage of haplotypes that alternatively develop into dominant or under-represented. Viruses 11, https://doi.org/10.3390/v11080754 (2019).

  • OIE. in Guide of Diagnostic Checks for Aquatic Animals (2016).

  • Yasumoto, S., Yoshimura, T. & Miyazaki, T. Oral immunization of frequent carp with a liposome vaccine containing Aeromonas hydrophila Antigen. Fish. Pathol. 41, 45–49 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Embregts, C. W. E. et al. Intra-muscular and oral vaccination utilizing a Koi Herpesvirus ORF25 DNA vaccine doesn’t confer safety in frequent carp (Cyprinus carpio L.). Fish. shellfish Immunol. 85, 90–98 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Acton, R. T. et al. Tetrameric immune macroglobulins in three orders of bony fishes. Proc. Natl Acad. Sci. USA. 68, 107–111 (1971).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Honda, A. et al. Phagocytic exercise of macrophages of rainbow trout in opposition to Vibrio anguillarum and the opsonising impact of antibody and complement. Res. Vet. Sci. 40, 328–332 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Whyte, S. Ok., Chappell, L. H. & Secombes, C. J. Safety of rainbow trout, Oncorhynchus mykiss (Richardson), in opposition to Diplostomum spathaceum (Digenea): the position of particular antibody and activated macrophages. J. fish. Dis. 13, 281–291 (1990).

    Article 

    Google Scholar
     

  • Pickart, C. M. & Eddins, M. J. Ubiquitin: constructions, capabilities, mechanisms. Biochim Biophys. Acta 1695, 55–72 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pickart, C. M. & Raasi, S. Managed Synth. Polyubiquitin Chains 399, 21–36 (2005).

    CAS 

    Google Scholar
     

  • Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. Annu Rev. Biochem 61, 761–807 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barriere, H., Nemes, C., Du, Ok. & Lukacs, G. L. Plasticity of polyubiquitin recognition as lysosomal concentrating on indicators by the endosomal sorting equipment. Mol. Biol. Cell 18, 3952–3965 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Polo, S. et al. A single motif accountable for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dang, Y., Siew, L. M. & Zheng, Y. H. APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent method with out being polyubiquitylated. J. Biol. Chem. 283, 13124–13131 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, J., Wang, Ok., Wang, S. & Zheng, C. Herpes simplex virus 1 E3 ubiquitin ligase ICP0 protein inhibits tumor necrosis issue alpha-induced NF-kappaB activation by interacting with p65/RelA and p50/NF-kappaB1. J. Virol. 87, 12935–12948 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mossman, Ok. L. Activation and inhibition of virus and interferon: the herpesvirus story. Viral Immunol. 15, 3–15 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robertsen, B. The interferon system of teleost fish. Fish. shellfish Immunol. 20, 172–191 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Samuel, C. E. Antiviral Actions of Interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanarek, N. & Ben-Neriah, Y. Regulation of NF-kappaB by ubiquitination and degradation of the IkappaBs. Immunol. Rev. 246, 77–94 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Solar, S. C. The non-canonical NF-kappaB pathway in immunity and irritation. Nat. Rev. Immunol. 17, 545–558 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, T., Zhang, L., Joo, D. & Solar, S. C. NF-kappaB signaling in irritation. Sign Transduct Goal Ther 2, https://doi.org/10.1038/sigtrans.2017.23 (2017).

  • Liu, Q., Rao, Y., Tian, M., Zhang, S. & Feng, P. Modulation of Innate Immune Signaling Pathways by Herpesviruses. Viruses 11, https://doi.org/10.3390/v11060572 (2019).

  • Kuri, P., Ellwanger, Ok., Kufer, T. A., Leptin, M. & Bajoghli, B. A high-sensitivity bi-directional reporter to observe NF-kappaB exercise in cell tradition and zebrafish in actual time. J. Cell Sci. 130, 648–657 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Kadowaki, T. et al. Orally administered LPS enhances head kidney macrophage activation with down-regulation of IL-6 in frequent carp (Cyprinus carpio. Fish & shellfish immunology 34, 1569–1575 (2013).

  • Piazzon, M. C., Wentzel, A. S., Wiegertjes, G. F. & Forlenza, M. Carp Il10a and Il10b exert an identical organic actions in vitro, however are differentially regulated in vivo. Developmental Comp. Immunol. 67, 350–360 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Yi, Y. et al. Purposeful characterization of viral tumor necrosis issue receptors encoded by cyprinid herpesvirus 3 (CyHV3) genome. Fish. shellfish Immunol. 45, 757–770 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boutier, M. et al. Cyprinid Herpesvirus 3: an archetype of fish alloherpesviruses. Adv. virus Res. 93, 161–256 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spearman, C. The Methodology of ‘Proper and Incorrect Instances’ (‘Fixed Stimuli’) with out Gauss’s Formulae. Br. J. Psychol., 1904-1920 2, 227–242 (1908).

    Article 

    Google Scholar
     

  • Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. f.ür. Experimentelle Pathologie und Pharmakologie 162, 480–483 (1931).

    Article 

    Google Scholar
     

  • Bergmann, S. M. et al. Validation of a KHV antibody enzyme-linked immunosorbent assay. ELISA. J. Fish Dis. 40, 1511–1527 (2017).

  • Gilad, O. et al. Concentrations of a Koi herpesvirus (KHV) in tissues of experimentally contaminated Cyprinus carpio koi as assessed by real-time TaqMan PCR. Dis. Aquat. Org. 60, 179–187 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Bergmann, S. M., Riechardt, M., Fichtner, D., Lee, P. & Kempter, J. Investigation on the diagnostic sensitivity of molecular instruments used for detection of koi herpesvirus. J. Virol Strategies 163, 229–233 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fuchs, W. & Mettenleiter, T. C. DNA sequence and transcriptional evaluation of the UL1 to UL5 gene cluster of infectious laryngotracheitis virus. J. Gen. Virol. 77, 2221–2229 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fu, C., Donovan, W. P., Shikapwashya-Hasser, O., Ye, X. & Cole, R. H. Scorching Fusion: an environment friendly technique to clone a number of DNA fragments in addition to inverted repeats with out ligase. PloS one 9, e115318 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fuchs, W. & Mettenleiter, T. C. DNA sequence of the UL6 to UL20 genes of infectious laryngotracheitis virus and characterization of the UL10 gene product as a nonglycosylated and nonessential virion protein. J. Gen. Virol. 80, 2173–2182 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Romstad, A. B., Reitan, L. J., Midtlyng, P., Gravningen, Ok. & Evensen, O. Antibody responses correlate with antigen dose and in vivo safety for oil-adjuvanted, experimental furunculosis (Aeromonas salmonicida subsp. salmonicida) vaccines in Atlantic salmon (Salmo salar L.) and can be utilized for batch efficiency testing of vaccines. Vaccine 31, 791–796 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schmittgen, T. D. & Livak, Ok. J. Analyzing real-time PCR knowledge by the comparative C(T) technique. Nat. Protoc. 3, 1101–1108 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Byadgi, O., Chen, Y. C., Maekawa, S., Wang, P. C. & Chen, S. C. Immune-related purposeful differential gene expression in Koi Carp (Cyprinus carpio) after problem with Aeromonas sobria. Int. J. Mol. Sci. 19, https://doi.org/10.3390/ijms19072107 (2018).

  • Shan, S. et al. Characterization and expression evaluation of Toll-interacting protein in frequent carp, Cyprinus carpio L., responding to bacterial and viral problem. Springerplus 5, 639 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tanekhy, M. & Sakai, M. Inflammatory cytokines responses of frequent carp, Cyprinus carpio, leucocytes in vitro handled by immunostimulants. Iranian J. Fish. Sci. 18, https://doi.org/10.22092/IJFS.2018.115484 (2019).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments