Sunday, October 30, 2022
HomeMicrobiologyGlyphosate and glyphosate-based herbicides (GBHs) induce phenotypic imipenem resistance in Pseudomonas aeruginosa

Glyphosate and glyphosate-based herbicides (GBHs) induce phenotypic imipenem resistance in Pseudomonas aeruginosa


  • Székács, A. & Darvas, B. Forty years with glyphosate. in Herbicides—Properties, Synthesis and Management of Weeds. 247–284. (IntechOpen, 2012).

  • Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, world gridded maps of the highest 20 crop-specific pesticide utility charges from 2015 to 2025. Sci. Information 61(6), 1–20 (2019).


    Google Scholar
     

  • Orcaray, L., Igal, M., Marino, D., Zabalza, A. & Royuela, M. The doable function of quinate within the mode of motion of glyphosate and acetolactate synthase inhibitors. Pest Manag. Sci. 66, 262–269 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Van Bruggen, A. H. C. et al. Environmental and well being results of the herbicide glyphosate. Sci. Whole Environ. 616–617, 255–268 (2018).

    PubMed 

    Google Scholar
     

  • Meftaul, I. M. et al. Controversies over human well being and ecological impacts of glyphosate: Is it to be banned in trendy agriculture? Environ. Pollut. 263, 114372 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Tóth, G. et al. Cytotoxicity and hormonal exercise of glyphosate-based herbicides. Environ. Pollut. 265, 115027 (2020).

    PubMed 

    Google Scholar
     

  • Nagy, Okay., Tessema, R. A., Budnik, L. T. & Ádám, B. Comparative cyto- and genotoxicity evaluation of glyphosate and glyphosate-based herbicides in human peripheral white blood cells. Environ. Res. 179, 108851 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Sørensen, M. T., Poulsen, H. D., Katholm, C. L. & Højberg, O. Overview: Feed residues of glyphosate—Potential penalties for livestock well being and productiveness. Animal 15, 100026 (2021).

    PubMed 

    Google Scholar
     

  • Sabio y García, C. A. et al. Rethinking the time period “glyphosate impact” via the analysis of various glyphosate-based herbicide results over aquatic microbial communities. Environ. Pollut. 292, 118382 (2022).

    PubMed 

    Google Scholar
     

  • Chávez-Ortiz, P., Tapia-Torres, Y., Larsen, J. & García-Oliva, F. Glyphosate-based herbicides alter soil carbon and phosphorus dynamics and microbial exercise. Appl. Soil Ecol. 169, 104256 (2022).


    Google Scholar
     

  • Owagboriaye, F. et al. Impacts of a glyphosate-based herbicide on the intestine microbiome of three earthworm species (Alma millsoni, Eudrilus eugeniae and Libyodrilus violaceus): A pilot examine. Toxicol. Experiences 8, 753–758 (2021).

    CAS 

    Google Scholar
     

  • Mesnage, R. & Antoniou, M. N. Computational modelling gives perception into the results of glyphosate on the shikimate pathway within the human intestine microbiome. Curr. Res. Toxicol. 1, 25–33 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maddalon, A., Galbiati, V., Colosio, C., Mandić-Rajčević, S. & Corsini, E. Glyphosate-based herbicides: Proof of immune-endocrine alteration. Toxicology 459, 152851 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Lozano, V. L. et al. Intercourse-dependent affect of roundup on the rat intestine microbiome. Toxicol. Experiences 5, 96–107 (2018).

    CAS 

    Google Scholar
     

  • Wardle, D. A. & Parkinson, D. Affect of the herbicides 2,4-D and glyphosate on soil microbial biomass and exercise: A discipline experiment. Soil Biol. Biochem. 24, 185–186 (1992).

    CAS 

    Google Scholar
     

  • Haney, R., Senseman, S., Hons, F. & Zuberer, D. Impact of glyphosate on soil microbial exercise and biomass | weed science | Cambridge core. Weed Sci. 48, 89–93 (2000).

    CAS 

    Google Scholar
     

  • Busse, M. D., Ratcliff, A. W., Shestak, C. J. & Powers, R. F. Glyphosate toxicity and the results of long-term vegetation management on soil microbial communities. Soil Biol. Biochem. 33, 1777–1789 (2001).

    CAS 

    Google Scholar
     

  • Allegrini, M., Zabaloy, M. C. & del Gómez, E. V. Ecotoxicological evaluation of soil microbial group tolerance to glyphosate. Sci. Whole Environ. 533, 60–68 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Newman, M. M. et al. Glyphosate results on soil rhizosphere-associated bacterial communities. Sci. Whole Environ. 543, 155–160 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pérez, G. L. et al. Results of the herbicide Roundup on freshwater microbial communities: A mesocosm examine. Ecol. Appl. 17, 2310–2322 (2007).

    PubMed 

    Google Scholar
     

  • Lu, T. et al. Understanding the affect of glyphosate on the construction and performance of freshwater microbial group in a microcosm. Environ. Pollut. 260, 114012 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhan, H., Feng, Y., Fan, X. & Chen, S. Latest advances in glyphosate biodegradation. Appl. Microbiol. Biotechnol. 102, 5033–5043 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, T. P. et al. Antibiotic resistance is the quintessential One Well being subject. Trans. R. Soc. Trop. Med. Hyg. 110, 377–380 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic remedy. Nat. Rev. Microbiol. 14, 320–330 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Whitehead, R. N., Overton, T. W., Kemp, C. L. & Webber, M. A. Publicity of Salmonella enterica Serovar Typhimurium to excessive degree biocide problem can choose multidrug resistant mutants in a single step. PLoS ONE 6, e22833 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurenbach, B. et al. Sublethal publicity to industrial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and Glyphosate trigger adjustments in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium. MBio 6, 00009 (2015).


    Google Scholar
     

  • Raoult, D., Hadjadj, L., Baron, S. A. & Rolain, J. M. Position of glyphosate within the emergence of antimicrobial resistance in micro organism?. J. Antimicrob. Chemother. 76, 1655–1657 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Bote, Okay., Pöppe, J., Merle, R., Makarova, O. & Roesler, U. Minimal inhibitory focus of glyphosate and of a glyphosate-containing Herbicide formulation for Escherichia coli isolates—Variations between pathogenicand non-pathogenic isolates and between host species. Entrance. Microbiol. 10, 932 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pöppe, J., Bote, Okay., Merle, R., Makarova, O. & Roesler, U. Minimal inhibitory focus of glyphosate and a glyphosate-containing herbicide in Salmonella enterica isolates originating from totally different time durations, hosts, and serovars. Eur. J. Microbiol. Immunol. 9, 35–41 (2019).


    Google Scholar
     

  • Kurenbach, B. et al. Herbicide components change Salmonella enterica sv. Typhimurium and Escherichia coli antibiotic responses. Microbiology 163, 1791–1801 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Herbicide promotes the conjugative switch of multi-resistance genes by facilitating mobile contact and plasmid switch. J. Environ. Sci. 115, 363–373 (2022).

    CAS 

    Google Scholar
     

  • Crone, S. et al. The environmental incidence of Pseudomonas aeruginosa. APMIS 128, 220–231 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Horcajada, J. P. et al. Epidemiology and Therapy of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 32, 31 (2019).


    Google Scholar
     

  • Aliaga, L., Mediavilla, J. D. & Cobo, F. A scientific index predicting mortality with Pseudomonas aeruginosa bacteraemia. J. Med. Microbiol. 51, 615–619 (2002).

    PubMed 

    Google Scholar
     

  • Lorè, N. I. et al. Cystic fibrosis-Area of interest adaptation of Pseudomonas aeruginosa reduces virulence in a number of an infection hosts. PLoS ONE 7, 35648 (2012).

    ADS 

    Google Scholar
     

  • Al-Saleh, E. & Akbar, A. Incidence of Pseudomonas aeruginosa in Kuwait soil. Chemosphere 120, 100–107 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaszab, E. et al. The incidence of multidrug-resistant Pseudomonas aeruginosa on hydrocarbon-contaminated websites. Microb. Ecol. 59, 37–45 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Kaszab, E. et al. Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains remoted from composts. Bioresour. Technol. 102, 1543–1548 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Radó, J. et al. Characterization of environmental Pseudomonas aeruginosa utilizing multilocus sequence typing scheme. J. Med. Microbiol. 66, 1457–1466 (2017).

    PubMed 

    Google Scholar
     

  • Hoodaji, M., Tahmourespour, A. & Partoazar, M. The effectivity of glyphosate biodegradation by Pseudomonas (aeruginosa). Microbes Appl. Res. Curr. Adv. Challenges (Malaga, Spain, 14–16 Sept) 2011, 183–186 (2012).


    Google Scholar
     

  • Ameen, N., Memon, Z., Shaheen, S., Fatima, G. & Ahmed, F. Imipenem Resistant Pseudomonas aeruginosa: The autumn of the ultimate quarterback. Pak. J. Med. Sci. 31, 561 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atzél, B., Szoboszlay, S., Mikuska, Z. & Kriszt, B. Comparability of phenotypic and genotypic strategies for the detection of environmental isolates of Pseudomonas aeruginosa. Int. J. Hyg. Environ. Well being 211, 143–155 (2008).

    PubMed 

    Google Scholar
     

  • Medeiros, A. A., O’Brien, T. F., Wacker, W. E. C. & Yulug, N. F. Impact of salt focus on the obvious in-vitro susceptibility of Pseudomonas and different gram-negative Bacilli to gentamicin. J. Infect. Dis. 124, S59–S64 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. Accredited record of bacterial names, amended version. Am. Soc. Microbiol. 30, 72 (1989).

  • Wang, Y., Li, C., Gao, C., Ma, C. & Xua, P. Genome sequence of the nonpathogenic Pseudomonas aeruginosa pressure ATCC 15442. Genome Announc. 2, 421 (2014).


    Google Scholar
     

  • Cassault-Meyer, E., Gress, S., Séralini, G. É. & Galeraud-Denis, I. An acute publicity to glyphosate-based herbicide alters aromatase ranges in testis and sperm nuclear high quality. Environ. Toxicol. Pharmacol. 38, 131–140 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • EUCAST: MIC Dedication. https://www.eucast.org/ast_of_bacteria/mic_determination/?no_cache=1. Accessed 9 Could 2022.

  • Fratini, F. et al. A novel interpretation of the fractional inhibitory focus index: The case Origanum vulgare L. and Leptospermum scoparium J.R. et G. Forst important oils towards Staphylococcus aureus strains. Microbiol. Res. 195, 11–17 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Faleiro, M. L. & Miguel, M. G. Use of important oils and their elements towards multidrug-resistant micro organism. in Preventing Multidrug Resistance with Natural Extracts, Important Oils and Their Parts. 65–94. (Educational Press, 2013).

  • Odds, F. C. Synergy, antagonism, and what the chequerboard places between them. J. Antimicrob. Chemother. 52, 1 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Ceballos-Garzon, A. et al. Genotypic, proteomic, and phenotypic approaches to decipher the response to caspofungin and calcineurin inhibitors in scientific isolates of echinocandin-resistant Candida glabrata. J. Antimicrob. Chemother. 77, 585–597 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Tsui, M. T. Okay. & Chu, L. M. Aquatic toxicity of glyphosate-based formulations: comparability between totally different organisms and the results of environmental elements. Chemosphere 52, 1189–1197 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Novotny, E. Glyphosate, roundup and the failures of regulatory evaluation. Toxics 10, 321 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, H. et al. Herbicide choice promotes antibiotic resistance in soil microbiomes. Mol. Biol. Evol. 38, 2337–2350 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Costa, N. B. et al. A glyphosate-based herbicide cross-selects for antibiotic resistance genes in bacterioplankton communities. mSystems 7, 1482 (2022).


    Google Scholar
     

  • Staub, J. M., Model, L., Tran, M., Kong, Y. & Rogers, S. G. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter. J. Ind. Microbiol. Biotechnol. 39, 641–647 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Kurenbach, B., Hill, A. M., Godsoe, W., Van Hamelsveld, S. & Heinemann, J. A. Agrichemicals and antibiotics together improve antibiotic resistance evolution. PeerJ 6, 5801 (2018).


    Google Scholar
     

  • EUCAST: Scientific Breakpoints and Dosing of Antibiotics. https://www.eucast.org/clinical_breakpoints/. Accessed 9 Could 2022 (2022).

  • Rosner, J. L. Nonheritable resistance to chloramphenicol and different antibiotics induced by salicylates and different chemotactic repellents in Escherichia coli Okay-12. Proc. Natl. Acad. Sci. USA 82, 8771–8774 (1985).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pöppe, J. et al. Choice for resistance to a glyphosate-containing Herbicide in Salmonella enterica doesn’t lead to a sustained activation of the tolerance response or elevated cross-tolerance and cross-resistance to clinically vital antibiotics. Appl. Environ. Microbiol. 86, 1204 (2020).


    Google Scholar
     

  • Pragasam, A. Okay., Raghanivedha, M., Anandan, S. & Veeraraghavan, B. Characterization of Pseudomonas aeruginosa with discrepant carbapenem susceptibility profile. Ann. Clin. Microbiol. Antimicrob. 15, 1–4 (2016).


    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments