Monday, October 31, 2022
HomeBiochemistryGlioblastoma cell motility relies on enhanced oxidative stress coupled with mobilization of...

Glioblastoma cell motility relies on enhanced oxidative stress coupled with mobilization of a sulfurtransferase


  • Viale A, Corti D, Draetta GF. Tumors and mitochondrial respiration: a uncared for connection. Most cancers Res. 2015;75:3685–6.

    Article 
    PubMed 

    Google Scholar
     

  • Badr CE, Silver DJ, Siebzehnrubl FA, Deleyrolle LP. Metabolic heterogeneity and adaptableness in mind tumors. Cell Mol Life Sci. 2020;77:5101–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlova NN, Zhu J, Thompson CB. The hallmarks of most cancers metabolism: nonetheless rising. Cell Metab. 2022;34:355–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stupp R, Taillibert S, Kanner A, Learn W, Steinberg D, Lhermitte B, et al. Impact of tumor-treating fields plus upkeep temozolomide vs upkeep temozolomide alone on survival in sufferers with glioblastoma: a randomized scientific trial. JAMA 2017;318:2306–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, et al. Mosaic amplification of a number of receptor tyrosine kinase genes in glioblastoma. Most cancers Cell. 2011;20:810–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma displays most cancers evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110:4009–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JK, Wang J, Sa JK, Ladewig E, Lee HO, Lee IH, et al. Spatiotemporal genomic structure informs precision oncology in glioblastoma. Nat Genet. 2017;49:594–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, et al. An anatomic transcriptional atlas of human glioblastoma. Science 2018;360:660–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative mannequin of mobile states, plasticity, and genetics for glioblastoma. Cell 2019;178:835–849.e21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhaduri A, Di Lullo E, Jung D, Müller S, Crouch EE, Espinosa CS, et al. Outer radial glia-like most cancers stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell. 2020;26:48–63.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a standard neurodevelopmental hierarchy. Nat Commun. 2020;11:3406.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang R, Sharma R, Shen X, Laughney AM, Funato Okay, Clark PJ, et al. Grownup human glioblastomas harbor radial glia-like cells. Stem Cell Rep. 2020;14:338–50.

    Article 
    CAS 

    Google Scholar
     

  • Richards LM, Whitley OKN, MacLeod G, Cavalli FMG, Coutinho FJ, Jaramillo JE, et al. Gradient of Developmental and Damage Response transcriptional states defines purposeful vulnerabilities underpinning glioblastoma heterogeneity. Nat Most cancers. 2021;2:157–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, et al. Stem cell-associated heterogeneity in Glioblastoma outcomes from intrinsic tumor plasticity formed by the microenvironment. Nat Commun. 2019;10:1787.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yabo YA, Niclou SP, Golebiewska A. Most cancers cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neuro Oncol. 2022;24:669–82.

    Article 
    PubMed 

    Google Scholar
     

  • Huber SM, Butz L, Stegen B, Klumpp D, Braun N, Ruth P, et al. Ionizing radiation, ion transports, and radioresistance of most cancers cells. Entrance Physiol. 2013;4:212.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, et al. VEGF inhibits tumor cell invasion and mesenchymal transition via a MET/VEGFR2 advanced. Most cancers Cell. 2012;22:21–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Gooijer MC, Guillén Navarro M, Bernards R, Wurdinger T, van Tellingen O. An experimenter’s information to glioblastoma invasion pathways. Developments Mol Med. 2018;24:763–80.

    Article 
    PubMed 

    Google Scholar
     

  • Armento A, Ehlers J, Schötterl S, Naumann U. Molecular Mechanisms of Glioma Cell Motility. In: De Vleeschouwer S, editor. Glioblastoma [Internet]. Brisbane (AU): Codon Publications; 2017; Chapter 5.

  • Scherer HJ. Structural growth in gliomas. Most cancers Res.1938;333‑51:34.

  • Montana V, Sontheimer H. Bradykinin promotes the chemotactic invasion of major mind tumors. J Neurosci. 2011;31:4858–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun. 2014;5:4196.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15:455–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedersen PH, Edvardsen Okay, Garcia-Cabrera I, Mahesparan R, Thorsen J, Mathisen B, et al. Migratory patterns of lac-z transfected human glioma cells within the rat mind. Int J Most cancers. 1995;62:767–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vollmann-Zwerenz A, Leidgens V, Feliciello G, Klein CA, Hau P. Tumor cell invasion in glioblastoma. Int J Mol Sci. 2020;21:E1932.

    Article 
    PubMed 

    Google Scholar
     

  • Volovetz J, Berezovsky AD, Alban T, Chen Y, Lauko A, Aranjuez GF, et al. Figuring out conserved molecular targets required for cell migration of glioblastoma most cancers stem cells. Cell Dying Dis. 2020;11:152.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, et al. Single-cell RNA-seq evaluation of infiltrating neoplastic cells on the migrating entrance of human glioblastoma. Cell Rep. 2017;21:1399–410.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, et al. Single-cell profiling of myeloid cells in glioblastoma throughout species and illness stage reveals macrophage competitors and specialization. Nat Neurosci. 2021;24:595–610.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joseph JV, Conroy S, Tomar T, Eggens-Meijer E, Bhat Okay, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that’s related to tumor invasion. Cell Dying Dis. 2014;5:e1443.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daubon T, Léon C, Clarke Okay, Andrique L, Salabert L, Darbo E, et al. Deciphering the advanced position of thrombospondin-1 in glioblastoma growth. Nat Commun. 2019;10:1146.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joseph JV, Magaut CR, Storevik S, Geraldo LH, Mathivet T, Latif MA, et al. TGF-β promotes microtube formation in glioblastoma via thrombospondin 1. Neuro Oncol. 2022;24:541–53.

    Article 
    PubMed 

    Google Scholar
     

  • Sen S, Dong M, Kumar S. Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology. PLoS ONE. 2009;4:e8427.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji J, Xu R, Ding Okay, Bao G, Zhang X, Huang B, et al. Lengthy noncoding RNA SChLAP1 types a growth-promoting advanced with HNRNPL in human glioblastoma via stabilization of ACTN4 and activation of NF-κB signaling. Clin Most cancers Res. 2019;25:6868–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tentler D, Lomert E, Novitskaya Okay, Barlev NA. Function of ACTN4 in tumorigenesis, metastasis, and EMT. Cells 2019;8:E1427.

    Article 
    PubMed 

    Google Scholar
     

  • Xia S, Lal B, Tung B, Wang S, Goodwin CR, Laterra J. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol. 2016;18:507–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frolov A, Evans IM, Li N, Sidlauskas Okay, Paliashvili Okay, Lockwood N, et al. Imatinib and Nilotinib enhance glioblastoma cell invasion through Abl-independent stimulation of p130Cas and FAK signalling. Sci Rep. 2016;6:27378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Colomé AM, Lee-Rivera I, Benavides-Hidalgo R, López E. Paxillin: a crossroad in pathological cell migration. J Hematol Oncol. 2017;10:50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar LH, Yang FQ, Zhang CB, Wu YP, Liang JS, Jin S, et al. Overexpression of paxillin correlates with tumor development and predicts poor survival in glioblastoma. CNS Neurosci Ther. 2017;23:69–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang W, Kim SH, Cho HJ, Jin J, Lee J, Joo KM, et al. Talin1 focusing on potentiates anti-angiogenic remedy by attenuating invasion and stem-like options of glioblastoma multiforme. Oncotarget 2015;6:27239–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagliardi F, Narayanan A, Mortini P. SPARCL1 a novel participant in most cancers biology. Crit Rev Oncol Hematol. 2017;109:63–8.

    Article 
    PubMed 

    Google Scholar
     

  • Saurty-Seerunghen MS, Bellenger L, El-Habr EA, Delaunay V, Garnier D, Chneiweiss H, et al. Seize on the single cell stage of metabolic modules distinguishing aggressive and indolent glioblastoma cells. Acta Neuropathol Commun. 2019;7:155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional community for mesenchymal transformation of mind tumours. Nature 2010;463:318–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tome-Garcia J, Erfani P, Nudelman G, Tsankov AM, Katsyv I, Tejero R, et al. Evaluation of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat Commun. 2018;9:4020.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima Okay. KEGG: new views on genomes, pathways, illnesses and medicines. Nucleic Acids Res. 2017;45:D353–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedre B, Dick TP. 3-Mercaptopyruvate sulfurtransferase: an enzyme on the crossroads of sulfane sulfur trafficking. Biol Chem. 2021;402:223–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical biology of H2S signaling via persulfidation. Chem Rev. 2018;118:1253–337.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanaoka Okay, Sasakura Okay, Suwanai Y, Toma-Fukai S, Shimamoto Okay, Takano Y, et al. Discovery and mechanistic characterization of selective inhibitors of H2S-producing enzyme: 3-mercaptopyruvate sulfurtransferase (3MST) focusing on active-site cysteine persulfide. Sci Rep. 2017;7:40227.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, et al. Selective persulfide detection reveals evolutionarily conserved antiaging results of S-sulfhydration. Cell Metab. 2019;30:1152–1170.e13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia JH, Jain S, Aghi MK. Metabolic drivers of invasion in glioblastoma. Entrance Cell Dev Biol. 2021;9:683276.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng MS, Chang JH, Hung WY, Yang YC, Chien MH. The interaction of reactive oxygen species and the epidermal progress issue receptor in tumor development and drug resistance. J Exp Clin Most cancers Res. 2018;37:61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dustin CM, Heppner DE, Lin MCJ, van der Vliet A. Redox regulation of tyrosine kinase signalling: greater than meets the attention. J Biochem. 2020;167:151–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial change promotes tumor metastasis. Cell Rep. 2014;8:754–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Augsburger F, Randi EB, Jendly M, Ascencao Okay, Dilek N, Szabo C. Function of 3-mercaptopyruvate sulfurtransferase within the regulation of proliferation, migration, and bioenergetics in murine colon most cancers cells. Biomolecules 2020;10:E447.

    Article 
    PubMed 

    Google Scholar
     

  • Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, et al. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA. 2014;111:7606–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao XH, Krokowski D, Guan BJ, Bederman I, Majumder M, Parisien M, et al. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming throughout the built-in stress response. Elife 2015;4:e10067.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, et al. H2S indicators via protein S-sulfhydration. Sci Sign. 2009;2:ra72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silver DJ, Roversi GA, Bithi N, Wang SZ, Troike KM, Neumann CK, et al. Extreme penalties of a high-lipid weight-reduction plan embody hydrogen sulfide dysfunction and enhanced aggression in glioblastoma. J Clin Make investments. 2021;131:138276.

  • Untereiner AA, Oláh G, Módis Okay, Hellmich MR, Szabo C. H2S-induced S-sulfhydration of lactate dehydrogenase a (LDHA) stimulates mobile bioenergetics in HCT116 colon most cancers cells. Biochem Pharmacol. 2017;136:86–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuhra Okay, Tomé CS, Forte E, Vicente JB, Giuffrè A. The multifaceted roles of sulfane sulfur species in cancer-associated processes. Biochim Biophys Acta Bioenerg. 2021;1862:148338.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav PK, Yamada Okay, Chiku T, Koutmos M, Banerjee R. Construction and kinetic evaluation of H2S manufacturing by human mercaptopyruvate sulfurtransferase. J Biol Chem. 2013;288:20002–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura Y, Koike S, Shibuya N, Lefer D, Ogasawara Y, Kimura H. 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) along with signaling molecules H2S2, H2S3 and H2S. Sci Rep. 2017;7:10459.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josse J. Principal element strategies – hierarchical clustering – partitional clustering: why would we have to select for visualizing knowledge? 2010.

  • Chen H, Albergante L, Hsu JY, Lareau CA, Lo Bosco G, Guan J, et al. Single-cell trajectories reconstruction, exploration and mapping of omics knowledge with STREAM. Nat Commun. 2019;10:1903.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Habr EA, Dubois LG, Burel-Vandenbos F, Bogeas A, Lipecka J, Turchi L, et al. A driver position for GABA metabolism in controlling stem and proliferative cell state via GHB manufacturing in glioma. Acta Neuropathol. 2017;133:645–60.

  • Eskilsson E, Rosland GV, Talasila KM, Knappskog S, Keunen O, Sottoriva A, et al. EGFRvIII mutations can emerge as late and heterogenous occasions in glioblastoma growth and promote angiogenesis via Src activation. Neuro Oncol. 2016;18:1644–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg S, Verreault M, Schmitt C, Guegan J, Guehennec J, Levasseur C, et al. Multi-omics evaluation of major glioblastoma cell traces exhibits recapitulation of pivotal molecular options of parental tumors. Neuro Oncol. 2017;19:219–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, et al. A patient-derived glioblastoma organoid mannequin and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 2020;180:188–204.e22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guyon J, Andrique L, Pujol N, Røsland GV, Recher G, Bikfalvi A, et al. A 3D spheroid mannequin for glioblastoma. J Vis Exp. 2020;158.

  • Courte J, Renault R, Jan A, Viovy JL, Peyrin JM, Villard C. Reconstruction of directed neuronal networks in a microfluidic gadget with uneven microchannels. Strategies Cell Biol. 2018;148:71–95.

    Article 
    PubMed 

    Google Scholar
     

  • Renault-Mihara F, Beuvon F, Iturrioz X, Canton B, De Bouard S, Léonard N, et al. Phosphoprotein enriched in astrocytes-15 kDa expression inhibits astrocyte migration by a protein kinase C delta-dependent mechanism. Mol Biol Cell. 2006;17:5141–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments