Saturday, September 17, 2022
HomeMicrobiologyGenomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by...

Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence


  • Subject, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Main manufacturing of the biosphere: integrating terrestrial and oceanic elements. Science 281, 237–240 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boyce, D. G., Lewis, M. R. & Worm, B. World phytoplankton decline over the previous century. Nature 466, 591–596 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton range in a altering local weather. Nat. Commun. 12, 5372 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The variety of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Agawin, N. S. R., Duarte, C. M. & Agustí, S. Nutrient and temperature management of the contribution of picoplankton to phytoplankton biomass and manufacturing. Limnol. Oceanogr. 45, 591–600 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. Ok. W. Rising significance of small phytoplankton in a hotter ocean. Glob. Change Biol. 16, 1137–1144 (2010).

    Article 

    Google Scholar
     

  • Li, W. Ok. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive because the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).

  • Benner, I., Irwin, A. J. & Finkel, Z. V. Capability of the widespread Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221–227 (2020).

  • Sunda, W. G. & Huntsman, S. A. Iron uptake and progress limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Raven, J. A. The twelfth Tansley Lecture. Small is gorgeous: the picophytoplankton. Funct. Ecol. 12, 503–513 (1998).

    Article 

    Google Scholar
     

  • Morel, F. M. M. & Worth, N. M. The biogeochemical cycles of hint metals within the oceans. Science 300, 944–947 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao, X., Bowler, C. & Kazamia, E. Iron metabolism methods in diatoms. J. Exp. Bot. 72, 2165–2180 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Caputi, L. et al. Group-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391–419 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Carradec, Q. et al. A worldwide ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron on the cell floor and facilitates uptake. Curr. Biol. 25, 364–371 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a assessment on the method of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).

    Article 

    Google Scholar
     

  • Smith, S. R. et al. Evolution and regulation of nitrogen flux by way of compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Natural nitrogen uptake and progress by the chrysophyte Aureococcus anophagefferens throughout a brown tide occasion. Mar. Biol. 129, 377–387 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the outline of a brand new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton neighborhood construction within the Atlantic and Pacific Oceans. Entrance. Microbiol. 11, 542372 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duerschlag, J. et al. Area of interest partitioning by photosynthetic plankton as a driver of CO2-fixation throughout the oligotrophic South Pacific Subtropical Ocean. ISME J 1–12 https://doi.org/10.1038/s41396-021-01072-z (2021).

  • Worden, A. Z. et al. World distribution of a wild alga revealed by focused metagenomics. Curr. Biol. 22, R675–R677 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dimier, C. é, Brunet, C., Geider, R. & Raven, J. Progress and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating gentle. Limnol. Oceanogr. 54, 823–836 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Dupont, C. L. et al. Genomes and gene expression throughout gentle and productiveness gradients in jap subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kang, Y. et al. Transcriptomic responses of 4 pelagophytes to nutrient (N, P) and lightweight stress. Entrance. Mar. Sci. 8, 636699 (2021).

  • Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533–536 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Waterhouse, R. M. et al. BUSCO functions from high quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nambiar, M. & Smith, G. R. Repression of dangerous meiotic recombination in centromeric areas. Semin Cell Dev. Biol. 54, 188–197 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pessia, E. et al. Proof for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675–682 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chi, J., Mahé, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene stock of 4 ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660–672 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic stock of meiotic genes; proof for intercourse in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Schurko, A. M. & Logsdon, J. M. Utilizing a meiosis detection toolkit to research historic asexual ‘scandals’ and the evolution of intercourse. Bioessays 30, 579–589 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ibarbalz, F. M. et al. World tendencies in marine plankton range throughout kingdoms of life. Cell 179, 1084–1097.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frémont, P. et al. Restructuring of plankton genomic biogeography within the floor ocean underneath local weather change. Nat. Clim. Chang. 12, 393–401 (2022).

    Article 

    Google Scholar
     

  • Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426–1433 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A assessment of the causes, results, and potential administration of dangerous brown tide blooms brought on by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005).

    Article 

    Google Scholar
     

  • Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected modifications in photosynthetic picoplankton in a hotter subtropical ocean. Entrance. Mar. Sci. 5, 506 (2019).

    Article 

    Google Scholar
     

  • Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton purposeful sorts exhibit numerous responses to thermal change. Nat. Commun. 12, 6413 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin, J. H. et al. Testing the iron speculation in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Impact of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turnšek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Urzica, E. I. et al. Programs and trans-system degree evaluation identifies conserved iron deficiency responses within the plant lineage[W][OA]. Plant Cell 24, 3921–3948 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mao, X. et al. Variety, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602–605 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese language pressure of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182–190 (2018).

    Article 

    Google Scholar
     

  • Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT area: a predicted nitrate-responsive module in bacterial sensory receptors. Developments Biochem Sci. 28, 121–124 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. Common nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274–7284 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Durand, N. C. et al. Juicer offers a one-click system for analyzing loop-resolution Hello-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, R., Li, Y., Kristiansen, Ok. & Wang, J. SOAP: quick oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Knowledge 4, 170093 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: quick and correct filtering of ribosomal RNAs in metatranscriptomic knowledge. Bioinformatics 28, 3211–3217 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, D., Tune, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: fast and delicate classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).

  • Vurture, G. W. et al. GenomeScope: quick reference-free genome profiling from quick reads. Bioinformatics 33, 2202–2204 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vaser, R. & Šikić, M. One more de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).

  • Liu, H. et al. SMARTdenovo: a de novo assembler utilizing lengthy noisy reads. Gigabyte 2021, 1–9 (2021).

    Article 

    Google Scholar
     

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Meeting of lengthy, error-prone reads utilizing repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ruan, J. & Li, H. Quick and correct long-read meeting with wtdbg2. Nat. Strategies 17, 155–158 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wick, R. R., Schultz, M. B., Zobel, J. & Holt, Ok. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Quick and correct de novo genome meeting from lengthy uncorrected reads. Genome Res 27, 737–746 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware sprucing of genome assemblies with correct reads. NAR Genomics Bioinform. 3, lqab034 (2021).

  • Benson, G. Tandem repeats finder: a program to research DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A quick and symmetric DUST implementation to masks low-complexity DNA sequences. J. Comput Biol. 13, 1028–1040 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smit, A. F. A., Hubley, R. & Inexperienced, P. RepeatMasker. http://repeatmasker.org/ (2013).

  • Worth, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat households in giant genomes. Bioinformatics 21, i351–i358 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Quinlan, A. R. & Corridor, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pedersen, B. S. & Quinlan, A. R. Mosdepth: fast protection calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: strong de novo RNA-seq meeting throughout the dynamic vary of expression ranges. Bioinformatics 28, 1086–1092 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo quick learn meeting utilizing de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Marchler-Bauer, A. et al. CDD: NCBI’s conserved area database. Nucleic Acids Res. 43, D222–D226 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).

  • Kent, W. J. BLAT–the BLAST-like alignment device. Genome Res. 12, 656–664 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Primary native alignment search device. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stanke, M. et al. AUGUSTUS: ab initio prediction of different transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dubarry, M. et al. Gmove a device for eukaryotic gene predictions utilizing numerous evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).

  • Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).

  • Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buchfink, B., Reuter, Ok. & Drost, H.-G. Delicate protein alignments at tree-of-life scale utilizing DIAMOND. Nat. Strategies 18, 366–368 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aramaki, T. et al. KofamKOALA: KEGG Ortholog project primarily based on profile HMM and adaptive rating threshold. Bioinformatics 36, 2251–2252 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delmont, T. O. et al. Useful repertoire convergence of distantly associated eukaryotic plankton lineages plentiful within the sunlit ocean. Cell Genomics 2, 100123 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Quick and correct quick learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pesant, S. et al. Open science assets for the invention and evaluation of Tara Oceans knowledge. Sci. Knowledge 2, 150023 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical mannequin for carbon and ecosystem research. Geoscientific Mannequin Dev. 8, 2465–2513 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Clayton, S. et al. Biogeochemical versus ecological penalties of modeled ocean physics. Biogeosciences 14, 2877–2889 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Ravindra, Ok., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive fashions: constructing proof of air air pollution, local weather change and human well being. Environ. Int. 132, 104987 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Günther, F. & Fritsch, S. neuralnet: coaching of neural networks. R. J. 2, 30–38 (2010).

    Article 

    Google Scholar
     

  • Gobler, C. J. et al. Area of interest of dangerous alga Aureococcus anophagefferens revealed by way of ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352–4357 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, L. et al. Genome meeting of Nannochloropsis oceanica offers proof of host nucleus overthrow by the symbiont nucleus throughout speciation. Commun. Biol. 2, 1–12 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary historical past of diatom genomes. Nature 456, 239–244 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Worden, A. Z. et al. Inexperienced evolution and dynamic diversifications revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268–272 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Palenik, B. et al. The tiny eukaryote Ostreococcus offers genomic insights into the paradox of plankton speciation. PNAS 104, 7705–7710 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moreau, H. et al. Gene functionalities and genome construction in Bathycoccus prasinos mirror mobile specializations on the base of the inexperienced lineage. Genome Biol. 13, R74 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Learn, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its world distribution. Nature 499, 209–213 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments