Friday, November 4, 2022
HomeMicrobiologyEvaluation of the biofilm-forming potential on stable surfaces of periprosthetic infection-associated pathogens

Evaluation of the biofilm-forming potential on stable surfaces of periprosthetic infection-associated pathogens


  • Flemming, H. C. et al. Biofilms: An emergent type of bacterial life. Nat. Rev. Microbiol. 14(9), 563–575 (2016).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Tallawi, M., Opitz, M. & Lieleg, O. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater. Sci. 5(5), 887–900 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Dunne, W. M. Jr. Bacterial adhesion: Seen any good biofilms currently?. Clin. Microbiol. Rev. 15(2), 155–166 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hrynyshyn, A., Simoes, M. & Borges, A. Biofilms in surgical web site infections: Latest advances and novel prevention and eradication methods. Antibiotics 11(1), 69 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheuermann-Poley, C. et al. The importance of biofilm for the therapy of infections in orthopedic surgical procedure: 2017 replace. Unfallchirurg 120(6), 461–471 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Faustino, C. M. C. et al. A scope at antifouling methods to forestall catheter-associated infections. Adv. Coll. Interface Sci. 284, 102230 (2020).

    CAS 

    Google Scholar
     

  • Fragkioudakis, I. et al. Present ideas on the pathogenesis of peri-implantitis: A story assessment. Eur. J. Dent. 15(2), 379–387 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berglundh, T. et al. Peri-implantitis and its prevention. Clin. Oral Implants Res. 30(2), 150–155 (2019).

    PubMed 

    Google Scholar
     

  • Jain, A. & Agarwal, A. Biofilm manufacturing, a marker of pathogenic potential of colonizing and commensal staphylococci. J. Microbiol. Strategies 76(1), 88–92 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Khan, R., Petersen, F. C. & Shekhar, S. Commensal micro organism: An rising participant in protection towards respiratory pathogens. Entrance. Immunol. 10, 1203 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Packey, C. D. & Sartor, R. B. Commensal micro organism, conventional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel illnesses. Curr. Opin. Infect. Dis. 22(3), 292–301 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y. et al. Prevalence and Therapies of antibiotic-resistance in Staphylococcus aureus. Entrance. Cell. Infect. Microbiol. 10, 107 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews, W. W. et al. Genital tract methicillin-resistant Staphylococcus aureus: Danger of vertical transmission in pregnant ladies. Obstet. Gynecol. 111(1), 113–118 (2008).

    PubMed 

    Google Scholar
     

  • Clement, S. et al. Proof of an intracellular reservoir within the nasal mucosa of sufferers with recurrent Staphylococcus aureus rhinosinusitis. J. Infect. Dis. 192(6), 1023–1028 (2005).

    PubMed 

    Google Scholar
     

  • McCaig, L. F. et al. Staphylococcus aureus-associated pores and skin and tender tissue infections in ambulatory care. Emerg. Infect. Dis. 12(11), 1715–1723 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cascioferro, S. et al. Therapeutic methods to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem 16(1), 65–80 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Moradali, M. F., Ghods, S. & Rehm, B. H. Pseudomonas aeruginosa way of life: A paradigm for adaptation, survival and persistence. Entrance. Cell. Infect. Microbiol. 7, 39 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, S. J. et al. Catheter-associated urinary tract an infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect. Immun. 82(5), 2048–2058 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, V. Okay., Rasouli, M. R. & Parvizi, J. Periprosthetic joint an infection: Present idea. Indian J. Orthop. 47(1), 10–17 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flurin, L., Greenwood-Quaintance, Okay. E. & Patel, R. Microbiology of polymicrobial prosthetic joint an infection. Diagn. Microbiol. Infect. Dis. 94(3), 255–259 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Paluch, E. et al. Prevention of biofilm formation by quorum quenching. Appl. Microbiol. Biotechnol. 104(5), 1871–1881 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samrot, A. V. et al. Mechanisms and impression of biofilms and focusing on of biofilms utilizing bioactive compounds—A assessment. Medicina 57(8), 839 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marinho, A. R. et al. Biofilm formation on polystyrene beneath totally different temperatures by antibiotic resistant Enterococcus faecalis and Enterococcus faecium remoted from meals. Braz. J. Microbiol. 44(2), 423–426 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Publish, V. et al. Comparative genomics examine of Staphylococcus epidermidis isolates from orthopedic-device-related infections correlated with affected person consequence. J. Clin. Microbiol. 55(10), 3089–3103 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svensson Malchau, Okay. et al. Biofilm properties in relation to therapy consequence in sufferers with first-time periprosthetic hip or knee joint an infection. J. Orthop. Transl. 30, 31–40 (2021).


    Google Scholar
     

  • Lynwood, C. Polystyrene: synthesis, traits and functions. In Chemistry Analysis and Functions (ed. Lynwood, C.) (Nova Publishers, New York, 2014).


    Google Scholar
     

  • Wang, Z. et al. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial exercise and osteogenesis. Coll. Surf. B Biointerfaces 204, 111802 (2021).

    CAS 

    Google Scholar
     

  • Coraca-Huber, D. C. et al. Staphylococcus aureus biofilm formation and antibiotic susceptibility exams on polystyrene and steel surfaces. J. Appl. Microbiol. 112(6), 1235–1243 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Krasowska, A. & Sigler, Okay. How microorganisms use hydrophobicity and what does this imply for human wants?. Entrance. Cell. Infect. Microbiol. 4, 112 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikoo, M., Regenstein, J. M. & Ahmadi Gavlighi, H. Antioxidant and antimicrobial actions of (−)-epigallocatechin-3-gallate (EGCG) and its potential to protect the standard and security of meals. Compr Rev. Meals Sci. Meals Saf. 17(3), 732–753 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Chakrawarti, L. et al. Therapeutic results of EGCG: A patent assessment. Professional Opin. Ther. Pat. 26(8), 907–916 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, A. et al. Biofilms: Survival and protection technique for pathogens. Int. J. Med. Microbiol. 307(8), 481–489 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, S. S. et al. Water as a supply for colonization and an infection with multidrug-resistant pathogens: Deal with sinks. Infect. Management Hosp. Epidemiol. 39(12), 1463–1466 (2018).

    PubMed 

    Google Scholar
     

  • Davidson, D. J., Spratt, D. & Liddle, A. D. Implant supplies and prosthetic joint an infection: The battle with the biofilm. EFORT Open Rev. 4(11), 633–639 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orazi, G. & O’Toole, G. A. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm mannequin of cystic fibrosis an infection. mBio https://doi.org/10.1128/mBio.00873-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stipetic, L. H. et al. A novel metabolomic strategy used for the comparability of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics https://doi.org/10.1007/s11306-016-1002-0 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Resch A., et al. Comparative proteome evaluation of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6(6), 1867–1877 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Ikigai, H. et al. Bactericidal catechins harm the lipid bilayer. Biochim. Biophys. Acta 1147(1), 132–136 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Steinmann, J. et al. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a part of inexperienced tea. Br. J. Pharmacol. 168(5), 1059–1073 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakayama, T. et al. Mechanisms and structural specificity of hydrogen peroxide formation throughout oxidation of catechins. Meals Sci. Technol. Res. 8(3), 261–267 (2002).

    CAS 

    Google Scholar
     

  • Nakayama, M. et al. Mechanism for the antibacterial motion of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci. Biotechnol. Biochem. 79(5), 845–854 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Olson, Okay. R. et al. Inexperienced tea polyphenolic antioxidants oxidize hydrogen sulfide to thiosulfate and polysulfides: A doable new mechanism underpinning their organic motion. Redox Biol. 37, 101731 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gradisar, H. et al. Inexperienced tea catechins inhibit bacterial DNA gyrase by interplay with its ATP binding web site. J. Med. Chem. 50(2), 264–271 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Du, G. J. et al. Epigallocatechin gallate (EGCG) is the best most cancers chemopreventive polyphenol in inexperienced tea. Vitamins 4(11), 1679–1691 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. R. et al. In vitro examine on anti-inflammatory results of epigallocatechin-3-gallate-loaded nano- and microscale particles. Int. J. Nanomed. 12, 7007–7013 (2017).

    CAS 

    Google Scholar
     

  • Henning, S. A. et al. Bioavailability and antioxidant impact of epigallocatechin gallate administered in purified kind versus as inexperienced tea extract in wholesome people. J. Nutr. Biochem. 16(10), 610–616 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Heilbronner, S. & Foster, T. J. Staphylococcus lugdunensis: A pores and skin commensal with invasive pathogenic potential. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00205-20 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lourtet-Hascoet, J. et al. Staphylococcus lugdunensis, a critical pathogen in periprosthetic joint infections: Comparability to Staphylococcus aureus and Staphylococcus epidermidis. Int. J. Infect. Dis. 51, 56–61 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Okay.-H. et al. The affect of urinary catheter supplies on forming biofilms of microorganisms. J. Bacteriol. Virol. 47(1), 32 (2017).

    CAS 

    Google Scholar
     

  • Galan-Ladero, M. A. et al. Dedication of biofilm manufacturing by Candida tropicalis remoted from hospitalized sufferers and its relation to mobile floor hydrophobicity, plastic adherence and filamentation potential. Yeast 30(9), 331–339 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. J. & Lee, Okay.-H. Affect of cell floor hydrophobicity on adhesion and biofilm formation in Candida albicans and a number of other bacterial species. J. Bacteriol. Virol. 48(3), 73 (2018).

    CAS 

    Google Scholar
     

  • Abdel Halim, R. M., Kassem, N. N. & Mahmoud, B. S. Detection of biofilm producing Staphylococci amongst totally different medical isolates and its relation to Methicillin susceptibility. Open Entry Maced. J. Med. Sci. 6(8), 1335–1341 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hrv, R., Devaki, R. & Kandi, V. Analysis of various phenotypic methods for the detection of slime produced by micro organism remoted from medical specimens. Cureus 8(2), e505 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsueh, Y. H. et al. Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator (vol 72, pg 5089, 2006). Appl. Environ. Microbiol. 72(11), 7428–7428 (2006).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Palka, L. et al. Susceptibility to biofilm formation on 3D-printed titanium fixation plates used within the mandible: A preliminary examine. J. Oral Microbiol. 12(1), 1838164 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Toole, G. A. Microtiter dish biofilm formation assay. J. Vis. Exp. https://doi.org/10.3791/2437 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mireles, J. R. 2nd., Toguchi, A. & Harshey, R. M. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming talents: Surfactin inhibits biofilm formation. J. Bacteriol. 183(20), 5848–54 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pompilio, A. et al. Elements related to adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: The position of cell floor hydrophobicity and motility. FEMS Microbiol. Lett. 287(1), 41–47 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments