Saturday, October 1, 2022
HomeMicrobiologyDrug resistance and inhabitants construction of Plasmodium falciparum and Plasmodium vivax within...

Drug resistance and inhabitants construction of Plasmodium falciparum and Plasmodium vivax within the Peruvian Amazon


  • WHO. World malaria report 2021. Geneva: WHO (2021).

  • Recht, J. et al. Malaria in Brazil, Colombia, Peru and Venezuela: Present challenges in malaria management and elimination. Malar. J. 16, 273. https://doi.org/10.1186/s12936-017-1925-6 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CDC-Peru. Numero de Casos de Malaria, Peru 2015–2020, https://www.dge.gob.pe/portal/ (2020).

  • Department, O. et al. Clustered native transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a just lately emerged, hypoendemic Peruvian Amazon group. Malar. J. 4, 27. https://doi.org/10.1186/1475-2875-4-27 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mejia Torres, R. E. et al. Efficacy of chloroquine for the therapy of uncomplicated Plasmodium falciparum malaria in Honduras. Am. J. Trop. Med. Hygiene 88, 850–854. https://doi.org/10.4269/ajtmh.12-0671 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Feo Istúriz, O. et al. Compartiendo lecciones aprendidas. Proyecto management de malaria en zonas fronterizas de la región andina: un enfoque comunitario-PAMAFRO. (2009).

  • Rosas-Aguirre, A. et al. Epidemiology of Plasmodium vivax Malaria in Peru. Am. J. Trop. Med. Hyg. 95, 133–144. https://doi.org/10.4269/ajtmh.16-0268 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardo, Okay. Plan de Eliminación de la Malaria en Loreto (Plan Malaria Cero 2017–2021). (Dirección de Prevención y Management de Enfermedades Metaxenicas y Zoonosis, 2021).

  • Bacon, D. J. et al. Dynamics of malaria drug resistance patterns within the Amazon basin area following adjustments in Peruvian nationwide therapy coverage for uncomplicated malaria. Antimicrob. Brokers Chemother. 53, 2042–2051. https://doi.org/10.1128/AAC.01677-08 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffing, S. M. et al. South American Plasmodium falciparum after the malaria eradication period: Clonal inhabitants growth and survival of the fittest hybrids. PLoS ONE 6, e23486. https://doi.org/10.1371/journal.pone.0023486 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okoth, S. A. et al. Molecular investigation right into a Malaria outbreak in Cusco, Peru: Plasmodium falciparum BV1 lineage is linked to a second outbreak in current instances. Am. J. Trop. Med. Hyg. 94, 128–131. https://doi.org/10.4269/ajtmh.15-0442 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldeviano, G. C. et al. Molecular epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010–2012. Emerg. Infect. Dis. 21, 797–803. https://doi.org/10.3201/eid2105.141427 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutton, P. L., Neyra, V., Hernandez, J. N. & Department, O. H. Plasmodium falciparum and Plasmodium vivax infections within the Peruvian Amazon: Propagation of advanced, a number of allele-type infections with out super-infection. Am. J. Trop. Med. Hyg. 81, 950–960. https://doi.org/10.4269/ajtmh.2009.09-0132 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Van den Eede, P. et al. Multilocus genotyping reveals excessive heterogeneity and powerful native inhabitants construction of the Plasmodium vivax inhabitants within the Peruvian Amazon. Malar. J. 9, 151. https://doi.org/10.1186/1475-2875-9-151 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delgado-Ratto, C. et al. Inhabitants genetics of Plasmodium vivax within the Peruvian Amazon. PLoS Negl. Trop. Dis. 10, e0004376. https://doi.org/10.1371/journal.pntd.0004376 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manrique, P. et al. Microsatellite evaluation reveals connectivity amongst geographically distant transmission zones of Plasmodium vivax within the Peruvian Amazon: A important barrier to regional malaria elimination. PLoS Negl. Trop. Dis. 13, e0007876. https://doi.org/10.1371/journal.pntd.0007876 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delgado-Ratto, C. et al. Inhabitants construction and spatio-temporal transmission dynamics of Plasmodium vivax after radical treatment therapy in a rural village of the Peruvian Amazon. Malar. J. 13, 8. https://doi.org/10.1186/1475-2875-13-8 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rathod, P. Okay., McErlean, T. & Lee, P. C. Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 94, 9389–9393 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Larranaga, N. et al. Genetic construction of Plasmodium falciparum populations throughout the Honduras-Nicaragua border. Malar. J. 12, 354. https://doi.org/10.1186/1475-2875-12-354 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucchi, N. W., Ljolje, D., Silva-Flannery, L. & Udhayakumar, V. Use of malachite green-loop mediated isothermal amplification for detection of Plasmodium spp. parasites. PLoS ONE 11, e0151437. https://doi.org/10.1371/journal.pone.0151437 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barazorda, Okay. A., Salas, C. J., Bishop, D. Okay., Lucchi, N. & Valdivia, H. O. Comparability of actual time and malachite-green based mostly loop-mediated isothermal amplification assays for the detection of Plasmodium vivax and P. falciparum. PLoS ONE 15, e0234263. https://doi.org/10.1371/journal.pone.0234263 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangold, Okay. A. et al. Actual-time PCR for detection and identification of Plasmodium spp. J. Clin. Microbiol. 43, 2435–2440. https://doi.org/10.1128/JCM.43.5.2435-2440.2005 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacob, C. G. et al. Genetic surveillance within the Better Mekong subregion and South Asia to help malaria management and elimination. Elife https://doi.org/10.7554/eLife.62997 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baniecki, M. L. et al. Growth of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl. Trop. Dis. 9, e0003539. https://doi.org/10.1371/journal.pntd.0003539 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marfurt, J. et al. Molecular markers of in vivo Plasmodium vivax resistance to amodiaquine plus sulfadoxine-pyrimethamine: Mutations in pvdhfr and pvmdr1. J. Infect. Dis. 198, 409–417. https://doi.org/10.1086/589882 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Korsinczky, M. et al. Sulfadoxine resistance in Plasmodium vivax is related to a selected amino acid in dihydropteroate synthase on the putative sulfadoxine-binding web site. Antimicrob. Brokers Chemother. 48, 2214–2222. https://doi.org/10.1128/AAC.48.6.2214-2222.2004 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suwanarusk, R. et al. Chloroquine resistant Plasmodium vivax: In vitro characterisation and affiliation with molecular polymorphisms. PLoS ONE 2, e1089. https://doi.org/10.1371/journal.pone.0001089 (2007).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55. https://doi.org/10.1038/nature12876 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Miotto, O. et al. Genetic structure of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226–234. https://doi.org/10.1038/ng.3189 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson, D. S., Walliker, D. & Wellems, T. E. Proof {that a} level mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl. Acad. Sci. USA 85, 9114–9118. https://doi.org/10.1073/pnas.85.23.9114 (1988).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foote, S. J., Galatis, D. & Cowman, A. F. Amino acids within the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum concerned in cycloguanil resistance differ from these concerned in pyrimethamine resistance. Proc. Natl. Acad. Sci. USA 87, 3014–3017. https://doi.org/10.1073/pnas.87.8.3014 (1990).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picot, S. et al. A scientific evaluate and meta-analysis of proof for correlation between molecular markers of parasite resistance and therapy final result in falciparum malaria. Malar. J. 8, 89. https://doi.org/10.1186/1475-2875-8-89 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amato, R. et al. Genetic markers related to dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: A genotype-phenotype affiliation research. Lancet Infect Dis. 17, 164–173. https://doi.org/10.1016/S1473-3099(16)30409-1 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fidock, D. A. et al. Mutations within the P. falciparum digestive vacuole transmembrane protein PfCRT and proof for his or her function in chloroquine resistance. Mol. Cell. 6, 861–871. https://doi.org/10.1016/s1097-2765(05)00077-8 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foote, S. J. et al. A number of alleles of the multidrug-resistance gene are intently linked to chloroquine resistance in Plasmodium falciparum. Nature 345, 255–258. https://doi.org/10.1038/345255a0 (1990).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Venkatesan, M. et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite danger elements that have an effect on therapy outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hygiene 91, 833–843. https://doi.org/10.4269/ajtmh.14-0031 (2014).

    Article 

    Google Scholar
     

  • Veiga, M. I. et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based mixture therapies. Nat. Commun. 7, 11553. https://doi.org/10.1038/ncomms11553 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malmberg, M. et al. Plasmodium falciparum drug resistance phenotype as assessed by affected person antimalarial drug ranges and its affiliation with pfmdr1 polymorphisms. J. Infect. Dis. 207, 842–847. https://doi.org/10.1093/infdis/jis747 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Reed, M. B., Saliba, Okay. J., Caruana, S. R., Kirk, Okay. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to a number of antimalarials in Plasmodium falciparum. Nature 403, 906–909. https://doi.org/10.1038/35002615 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chang, H. H. et al. THE REAL McCOIL: A technique for the concurrent estimation of the complexity of an infection and SNP allele frequency for malaria parasites. PLoS Comput. Biol. 13, e1005348. https://doi.org/10.1371/journal.pcbi.1005348 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galinsky, Okay. et al. COIL: A technique for evaluating malarial complexity of an infection utilizing chance from single nucleotide polymorphism knowledge. Malar. J. 14, 4. https://doi.org/10.1186/1475-2875-14-4 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: An R package deal for genetic evaluation of populations with clonal, partially clonal, and/or sexual copy. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A brand new sequence of applications to carry out inhabitants genetics analyses underneath Linux and Home windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Criscuolo, A. morePhyML: Enhancing the phylogenetic tree area exploration with PhyML 3. Mol. Phylogenet. Evol. 61, 944–948. https://doi.org/10.1016/j.ympev.2011.08.029 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: Extra fashions, new heuristics and parallel computing. Nat. Strategies 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: A web-based software for phylogenetic tree show and annotation. Nucleic Acids Res. 49, W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jombart, T. adegenet: A R package deal for the multivariate evaluation of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Leigh, J. W. & Bryant, D. POPART: Full-feature software program for haplotype community building. Strategies Ecol. Evol. 6, 1110–1116 (2015).

    Article 

    Google Scholar
     

  • MINSA. Resolucion Ministerial 034–2022-MINSA (2024).

  • Ome-Kaius, M. et al. Differential influence of malaria management interventions on P. falciparum and P. vivax infections in younger Papua New Guinean youngsters. BMC Med. 17, 220. https://doi.org/10.1186/s12916-019-1456-9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betuela, I. et al. Relapses contribute considerably to the chance of Plasmodium vivax an infection and illness in Papua New Guinean youngsters 1–5 years of age. J. Infect Dis. 206, 1771–1780. https://doi.org/10.1093/infdis/jis580 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Rovira-Vallbona, E. et al. Predominance of asymptomatic and sub-microscopic infections characterizes the Plasmodium gametocyte reservoir within the Peruvian Amazon. PLoS Negl. Trop. Dis. 11, e0005674. https://doi.org/10.1371/journal.pntd.0005674 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grietens, Okay. P. et al. Adherence to 7-day primaquine therapy for the unconventional treatment of P. vivax within the Peruvian Amazon. Am. J. Trop. Med. Hygiene 82, 1017–1023. https://doi.org/10.4269/ajtmh.2010.09-0521 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Muela Ribera, J., Hausmann-Muela, S., Gryseels, C. & Peeters Grietens, Okay. Re-imagining adherence to therapy from the “different facet”: Native interpretations of opposed anti-malarial drug reactions within the Peruvian Amazon. Malar. J. 15, 136. https://doi.org/10.1186/s12936-016-1193-x (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siqueira, A. M. et al. Characterization of Plasmodium vivax-associated admissions to reference hospitals in Brazil and India. BMC Med. 13, 57. https://doi.org/10.1186/s12916-015-0302-y (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Oliveira, T. C. et al. Genome-wide range and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl. Trop. Dis. 11, e0005824. https://doi.org/10.1371/journal.pntd.0005824 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hupalo, D. N. et al. Inhabitants genomics research determine signatures of world dispersal and drug resistance in Plasmodium vivax. Nat. Genet. 48, 953–958. https://doi.org/10.1038/ng.3588 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruebush, T. Okay. 2nd., Neyra, D. & Cabezas, C. Modifying nationwide malaria therapy insurance policies in Peru. J. Public Well being Coverage 25, 328–345. https://doi.org/10.1057/palgrave.jphp.3190032 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Suwanarusk, R. et al. Amplification of pvmdr1 related to multidrug-resistant Plasmodium vivax. J. Infect Dis 198, 1558–1564. https://doi.org/10.1086/592451 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Faway, E. et al. Plasmodium vivax multidrug resistance-1 gene polymorphism in French Guiana. Malar. J. 15, 540. https://doi.org/10.1186/s12936-016-1595-9 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, O., Lu, G. Y. & von Seidlein, L. Geographic growth of artemisinin resistance. J. Journey. Med. 26, 4. https://doi.org/10.1093/jtm/taz030 (2019).

    Article 

    Google Scholar
     

  • Sidhu, A. B., Valderramos, S. G. & Fidock, D. A. pfmdr1 mutations contribute to quinine resistance and improve mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol. Microbiol. 57, 913–926. https://doi.org/10.1111/j.1365-2958.2005.04729.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Villena, F. E., Lizewski, S. E., Joya, C. A. & Valdivia, H. O. Inhabitants genomics and proof of clonal alternative of Plasmodium falciparum within the Peruvian Amazon. Sci. Rep. 11, 21212. https://doi.org/10.1038/s41598-021-00806-5 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, S., Lachira-Alban, A. & Sánchez, C. C. Impacto de diferentes esquemas terapéuticos sobre la malaria en la costa y amazonia peruana, en el marco de una política de medicamentos antimaláricos, 1994–2017. Revista Peruana de Medicina Experimental y Salud Publica 35, 497–504 (2018).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments