Wednesday, November 2, 2022
HomeBiotechnologyComparative hydrodynamic characterisation of two hydroxylated polymers primarily based on α-pinene- or...

Comparative hydrodynamic characterisation of two hydroxylated polymers primarily based on α-pinene- or oleic acid-derived monomers for potential use as archaeological consolidants


  • Rosenqvist, A. M. The stabilizing of woodfound within the Viking ship of Oseberg: Half I. Stud. Conserv. 4, 13–22 (1959).

    CAS 

    Google Scholar
     

  • Braovac, S. & Kutzke, H. The presence of sulfuric acid in alum-conserved wooden—Origin and penalties. J. Cult. Herit. 13, S203–S208 (2012).

    Article 

    Google Scholar
     

  • Braovac, S. et al. Chemical analyses of extraordinarily degraded wooden utilizing analytical pyrolysis and inductively coupled plasma atomic emission spectroscopy. Microchem. J. 124, 368–379 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Braovac, S. et al. Navigating conservation methods: Linking materials analysis on alum-treated wooden from the Oseberg assortment to conservation selections. Herit. Sci. 6, 1–16 (2018).

    Article 
    ADS 

    Google Scholar
     

  • McQueen, C. M. A. et al. New insights into the degradation processes and affect of the conservation therapy in alum-treated wooden from the Oseberg assortment. Microchem. J. 132, 119–129 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Walsh-Korb, Z. & Avérous, L. Latest developments within the conservation of supplies properties of historic wooden. Prog. Mater. Sci. 102, 167–221 (2019).

    Article 

    Google Scholar
     

  • Walsh-Korb, Z. Sustainability in heritage wooden conservation: Challenges and instructions for future analysis. Forests 13, 1–35 (2022).


    Google Scholar
     

  • McHale, E. et al. Synthesis and characterisation of lignin-like oligomers as a bio-inspired consolidant for waterlogged archaeological wooden. Pure Appl. Chem. 88, 969–977. https://doi.org/10.1515/pac-2016-0814 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Christensen, M., Kutzke, H. & Hansen, F. Ok. New supplies used for the consolidation of archaeological wood-past makes an attempt, current struggles, and future necessities. J. Cult. Herit. 13S, S183–S190 (2012).

    Article 

    Google Scholar
     

  • Wakefield, J. M. Ok., Gillis, R. B., Adams, G. G., McQueen, C. M. A. & Harding, S. E. Managed depolymerisation assessed by analytical ultracentrifugation of low molecular weight chitosan to be used in archaeological conservation. Eur. Biophys. J. 47, 769–775 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenssen, V. Conservation of moist natural artefacts excluding wooden. In Conservation of Marine Archaeological Objects (ed. Pearson, C.) 122–163 (Butterworth-Heinemann, 1987).

    Chapter 

    Google Scholar
     

  • Christensen, M., Larnøy, E., Kutzke, H. & Hansen, F. Ok. Therapy of waterlogged archaeological wooden utilizing chitosan- and modified chitosan options. Half 1: Chemical compatibility and microstructure. J. Am. Inst. Conserv. 54, 3–13 (2015).

    Article 

    Google Scholar
     

  • Jiang, J., Chen, Y., Cao, J. & Mei, C. Improved hydrophobicity and dimensional stability of wooden handled with paraffin/acrylate compound emulsion by response floor methodology optimization. Polymers (Basel) 12, 86 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Dong, X., Liu, Y., Li, J. & Wang, F. Enchancment of decay resistance of wooden through mixture therapy on wooden cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. Int. Biodeterior. Biodegrad. 65, 1087–1094 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cutajar, M. et al. Terpene polyacrylate TPA5 reveals favorable molecular hydrodynamic properties as a possible bioinspired archaeological wooden consolidant. Sci. Rep. 11, 7343 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sainz, M. F. et al. A facile and inexperienced path to terpene derived acrylate and methacrylate monomers and easy free radical polymerisation to yield new renewable polymers and coatings. Polym. Chem. 7, 2882–2887 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Winnacker, M. Pinenes: Plentiful and renewable constructing blocks for quite a lot of sustainable polymers. Angew. Chem. 130, 14560–14569 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Llevot, A. et al. Renewability shouldn’t be sufficient: Latest advances within the sustainable synthesis of biomass-derived monomers and polymers. Chem. Eur. J. 22, 11510–11521 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hillmyer, M. A. & Tolman, W. B. Aliphatic polyester block polymers: Renewable, degradable, and sustainable. Acc. Chem. Res. 47, 2390–2396 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilela, C. et al. The search for sustainable polyesters-insights into the long run. Polym. Chem. 5, 3119–3141 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lima, M. S., Costa, C. S. M. F., Coelho, J. F. J., Fonseca, A. C. & Serra, A. C. A easy technique towards the substitution of styrene by sobrerol-based monomers in unsaturated polyester resins. Inexperienced Chem. 20, 4880–4890 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Stamm, A. et al. Chemo-enzymatic pathways towards pinene-based renewable supplies. Inexperienced Chem. 21, 2720–2731 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lligadas, G., Ronda, J. C., Galià, M. & Cádiz, V. Oleic and undecylenic acids as renewable feedstocks within the synthesis of polyols and polyurethanes. Polymers (Basel) 2, 440–453 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Y. & Larock, R. C. Vegetable oil-based polymeric supplies: Synthesis, properties, and purposes. Inexperienced Chem. 12, 1893–1909 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Seniha Güner, F., Yaǧci, Y. & Tuncer Erciyes, A. Polymers from triglyceride oils. Prog. Polym. Sci. 31, 633–670 (2006).

    Article 

    Google Scholar
     

  • Sharma, V. & Kundu, P. P. Addition polymers from pure oils—A evaluate. Prog. Polym. Sci. 31, 983–1008 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Meier, M. A. R., Metzger, J. O. & Schubert, U. S. Plant oil renewable assets as inexperienced alternate options in polymer science. Chem. Soc. Rev. 36, 1788–1802 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, V. & Kundu, P. P. Condensation polymers from pure oils. Prog. Polym. Sci. 33, 1199–1215 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Baumann, H. et al. Pure fat and oils—Renewable uncooked supplies for the Chemical Business. Angew. Chem. Int. Ed. Engl. 27, 41–62 (1988).

    Article 

    Google Scholar
     

  • Biermann, U. et al. New syntheses with oils and fat as renewable uncooked supplies for the chemical business. Biorefin. Ind. Course of. Prod. Standing Quo Futur. Dir. 2, 253–289 (2008).


    Google Scholar
     

  • Scott, D., Harding, S. & Rowe, A. Analytical Ultracentrifugation: Strategies and Strategies (Royal Society of Chemistry, 2005).


    Google Scholar
     

  • Harding, S. E. The Svedberg Lecture 2017. From nano to micro: the large dynamic vary of the analytical ultracentrifuge for characterising the sizes, shapes and interactions of molecules and assemblies in Biochemistry and Polymer Science. Eur. Biophys. J. 47, 697–707 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McHale, E., Steindal, C. C., Kutzke, H., Benneche, T. & Harding, S. E. In situ polymerisation of isoeugenol as a inexperienced consolidation technique for waterlogged archaeological wooden. Sci. Rep. 7, 1–9 (2017).

    Article 

    Google Scholar
     

  • Wakefield, J. M. Ok. et al. Aminoethyl substitution enhances the self-assembly properties of an aminocellulose as a possible archaeological wooden consolidant. Eur. Biophys. J. 49, 791–798 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakefield, J. M. Ok., Braovac, S., Kutzke, H., Stockman, R. A. & Harding, S. E. Tert-butyldimethylsilyl chitosan synthesis and characterization by analytical ultracentrifugation, for archaeological wooden conservation. Eur. Biophys. J. 49, 781–789 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cutajar, M. et al. Comparative hydrodynamic examine on non-qqueous soluble archaeological wooden consolidants: Butvar B-98 and PDMS-OH Siloxanes. Molecules 27, 2133 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Channell, G. A. et al. Use of the Prolonged Fujita technique for representing the molecular weight and molecular weight distributions of native and processed oat beta-glucans. Sci. Rep. 8, 6–13 (2018).

    Article 

    Google Scholar
     

  • Corma Canos, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemical substances. Chem. Rev. 107, 2411–2502 (2007).

    Article 

    Google Scholar
     

  • Neto, W. S. et al. Superparamagnetic nanoparticles stabilized with free-radical polymerizable oleic acid-based coating. J. Alloys Compd. 739, 1025–1036 (2017).

    Article 

    Google Scholar
     

  • Heuts, J. P. A., Muratore, L. M. & Davis, T. P. Preparation and characterization of oligomeric terpolymers of styrene, methyl methacrylate and 2-hydroxyethyl methacrylate: A comparability of standard and catalytic chain switch. Macromol. Chem. Phys. 201, 2780–2788 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Henríquez, C., Bueno, C., Lissi, E. A. & Encinas, M. V. Thiols as chain switch brokers in free radical polymerization in aqueous resolution. Polymer (Guildf). 44, 5559–5561 (2003).

    Article 

    Google Scholar
     

  • Whitfield, R., Parkatzidis, Ok., Truong, N. P., Junkers, T. & Anastasaki, A. Tailoring polymer dispersity by RAFT polymerization: A flexible method. Chemistry 6, 1340–1352 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schilling, M. R. The glass transition of supplies used inconservation. Stud. Conserv. 34, 110–116 (1989).

    CAS 

    Google Scholar
     

  • Davis, S. L., Roberts, C. & Poli, A. Paraloid® B-72/B-48N 1:1 as an adhesive to be used in hotclimates: Literature evaluate, laboratory testing, and observational area examine. Stud. Conserv. 67, 1–9 (2021).


    Google Scholar
     

  • Koob, S. P. The usage of Paraloid B-72 as an adhesive: Its software for archaeological ceramics and different supplies. Stud. Conserv. 31, 7–14 (1986).

    CAS 

    Google Scholar
     

  • Yasuda, H. Plasma Polymerization (Tutorial Press Inc., 1985).


    Google Scholar
     

  • Sander, M. M., Nicolau, A., Guzatto, R. & Samios, D. Plasticiser impact of oleic acid polyester on polyethylene and polypropylene. Polym. Take a look at. 31, 1077–1082 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lim, H. & Hoag, S. W. Plasticizer results on physical-mechanical properties of solvent solid Soluplus® movies. AAPS PharmSciTech 14, 903–910 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hazer, B., Ayyıldız, E., Eren, M., Seçilmiş Canbay, H. & Ashby, R. D. Autoxidized oleic acid bifunctional macro peroxide initiators totally free radical and condensation polymerization. Synthesis and characterization of multiblock copolymers. J. Polym. Environ. 27, 2562–2576 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Aharoni, S. M. Elevated glass transition temperature in motionally constrained semicrystalline polymers. Polym. Adv. Technol. 9, 169–201 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schmidt, P. L., Shugar, A. & Ploeger, R. Analytical observations concerning Butvar B-98 and Paraloid B-72 blends as an appropriate adhesive in scorching climates. MRS Adv. 2, 1927–1941 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pohoriljakova, I. & Moy, S. A. A re-evaluation of adhesives used for mending ceramics at Kaman-Kalehöyük: A remaining evaluation. Anatol. Archaeol. Stud. 9, 83–92 (2013).


    Google Scholar
     

  • Strahan, D., Unruh, J., Strahan, D. & Unruh, J. Conservation of ceramic artifacts on archaeological websites. F. Notes Pract. Guid. Archaeol. Conserv. Website Preserv. 12, 1–6 (2002).


    Google Scholar
     

  • Horie, V. Supplies for Conservation: Natural Consolidants, Adhesives and Coatings 2nd edn. (Elsevier, 2010).


    Google Scholar
     

  • Wakefield, J. Pure Polymers for Consolidation of the Oseberg Artefacts. PhD Dissertation, College of Nottingham (2020).

  • Kratky, O., Leopold, H. & Stabinger, H. The dedication of the partial particular quantity of proteins by the mechanical oscillator approach. Strategies Enzymol. 27, 98–110 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andriulo, F. et al. Hybrid nanocomposites made from diol-modified silanes and nanostructured calcium hydroxide. Purposes to Alum-treated wooden. Pure Appl. Chem. 89, 29–39 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schuck, P. Measurement-distribution evaluation of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuck, P. et al. SEDFIT-MSTAR: Molecular weight and molecular weight distribution evaluation of polymers by sedimentation equilibrium within the ultracentrifuge. Analyst 139, 79–92 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Creeth, J. & Harding, S. Some observations on a brand new sort of level common molecular weight. J. Biochem. Biophys. Strategies 7, 25–34 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillis, R. B. et al. MultiSig: A brand new high-precision method to the evaluation of advanced biomolecular methods. Eur. Biophys. J. 42, 777–786 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harding, S. E., Horton, J. C. & Cölfen, H. The ELLIPS suite of macromolecular conformation algorithms. Eur. Biophys. J. 25, 347–359 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simha, R. The Affect of Brownian motion on the viscosity of options. J. Phys. Chem. 44, 34 (1940).

    Article 

    Google Scholar
     

  • Saito, N. The impact of Brownian movement on the viscosity of options of macromolecules, I. Ellipsoid of revolution. J. Phys. Soc. 6, 297–301 (1951).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harding, S. E. & Rowe, A. J. Modeling organic macromolecules in resolution. II. The overall tri-axial ellipsoid. Biopolymers 22, 1813–1829 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding, S. E., Dampier, M. J. & Rowe, A. J. The viscosity increment for ellipsoids of revolution: Some observations on the Simha method. Biophys Chem. 15, 205–208 (1983).

    Article 

    Google Scholar
     

  • de la Torre, J. G. & Harding, S. E. Hydrodynamic modelling of protein conformation in resolution: ELLIPS and HYDRO. Biophys. Rev. 5, 195–206 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dam, J. & Schuck, P. Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity focus profiles. Strategies Enzymol. 384, 185–212 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solomon, O. F. & Ciuta, I. Z. Détermination de la viscosité intrinsèque de options de polymères par une easy détermination de la viscosité. J. Appl. Polym. Sci. 6, 683–686 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Harding, S. E. The intrinsic viscosity of organic macromolecules. Progress in measurement, interpretation and software to construction in dilute resolution. Prog. Biophys. Mol. Biol. 68, 207–262 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments