Friday, November 4, 2022
HomeBiochemistryAAA+ protease-adaptor constructions reveal altered conformations and ring specialization

AAA+ protease-adaptor constructions reveal altered conformations and ring specialization


  • Sauer, R. T. & Baker, T. A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoud, S. A. & Chien, P. Regulated proteolysis in micro organism. Annu. Rev. Biochem. 87, 677–696 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl Acad. Sci. USA 116, 358–366 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobias, J. W., Shrader, T. E., Rocap, G. & Varshavsky, A. The N-end rule in micro organism. Science 254, 1374–1377 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeth, Okay., Dougan, D. A., Cusack, S., Bukau, B. & Ravelli, R. B. Crystallization and preliminary X-ray evaluation of the Escherichia coli adaptor protein ClpS, free and in advanced with the N-terminal area of ClpA. Acta Crystallogr. D Biol. Crystallogr. 58, 1207–1210 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Zeth, Okay. et al. Structural evaluation of the adaptor protein ClpS in advanced with the N-terminal area of ClpA. Nat. Struct. Biol. 9, 906–911 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erbse, A. et al. ClpS is a vital part of the N-end rule pathway in Escherichia coli. Nature 439, 753–756 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Okay. H., Roman-Hernandez, G., Grant, R. A., Sauer, R. T. & Baker, T. A. The molecular foundation of N-end rule recognition. Mol. Cell 32, 406–414 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Román-Hernández, G., Grant, R. A., Sauer, R. T. & Baker, T. A. Molecular foundation of substrate choice by the N-end rule adaptor protein ClpS. Proc. Natl Acad. Sci. USA 106, 8888–8893 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, F., Esser, L., Singh, S. Okay., Maurizi, M. R. & Xia, D. Crystal construction of the heterodimeric advanced of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA. J. Biol. Chem. 277, 46753–46762 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Donatis, G. M., Singh, S. Okay., Viswanathan, S. & Maurizi, M. R. A single ClpS monomer is adequate to direct the exercise of the ClpA hexamer. J. Biol. Chem. 285, 8771–8781 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Román-Hernández, G., Hou, J. Y., Grant, R. A., Sauer, R. T. & Baker, T. A. The ClpS adaptor mediates staged supply of N-end rule substrates to the AAA+ ClpAP protease. Mol. Cell 43, 217–228 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivera-Rivera, I., Román-Hernández, G., Sauer, R. T. & Baker, T. A. Transforming of a supply advanced permits ClpS-mediated degradation of N-degron substrates. Proc. Natl Acad. Sci. USA 111, E3853–E3859 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres-Delgado, A., Kotamarthi, H. C., Sauer, R. T. & Baker, T. A. The intrinsically disordered N-terminal extension of the ClpS adaptor reprograms its associate AAA+ ClpAP protease. J. Mol. Biol. 432, 4908–4921 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J. Y., Sauer, R. T. & Baker, T. A. Distinct structural components of the adaptor ClpS are required for regulating degradation by ClpAP. Nat. Struct. Mol. Biol. 15, 288–294 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimaud, R., Kessel, M., Beuron, F., Steven, A. C. & Maurizi, M. R. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273, 12476–12481 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kress, W., Mutschler, H. & Weber-Ban, E. Each ATPase domains of ClpA are crucial for processing of secure protein constructions. J. Biol. Chem. 284, 31441–31452 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotamarthi, H. C., Sauer, R. T. & Baker, T. A. The non-dominant AAA+ ring within the ClpAP protease features as an anti-stalling motor to speed up protein unfolding and translocation. Cell Rep. 30, 2644–2654 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuromski, Okay. L., Sauer, R. T. & Baker, T. A. Modular and coordinated exercise of AAA+ energetic websites within the double-ring ClpA unfoldase of the ClpAP protease. Proc. Natl Acad. Sci. USA 117, 25455–25463 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuromski, Okay. L., Kim, S., Sauer, R. T. & Baker, T. A. Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease. J. Biol. Chem. 297, 101407 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez, Okay. E. et al. Conformational plasticity of the ClpAP AAA+ protease {couples} protein unfolding and proteolysis. Nat. Struct. Mol. Biol. 27, 406–416 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deville, C. et al. Structural pathway of regulated substrate switch and threading by an Hsp100 disaggregase. Sci. Adv. 3, e1701726 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gates, S. N. et al. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science 357, 273–279 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H. et al. ATP hydrolysis-coupled peptide translocation mechanism of Mycobacterium tuberculosis ClpB. Proc. Natl Acad. Sci. USA 115, E9560–E9569 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, Okay. I., Zhao, M., Choi, U. B., Pfuetzner, R. A. & Brunger, A. T. Structural ideas of SNARE advanced recognition by the AAA+ protein NSF. eLife 7, e38888 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, Y.-H. H. et al. Cryo-EM construction of the important ribosome meeting AAA-ATPase Rix7. Nat. Commun. 10, 513 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizo, A. N. et al. Structural foundation for substrate gripping and translocation by the ClpB AAA+ disaggregase. Nat. Commun. 10, 2393 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooney, I. et al. Construction of the Cdc48 segregase within the act of unfolding an genuine substrate. Science 365, 502–505 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Twomey, E. C. et al. Substrate processing by the Cdc48 ATPase advanced is initiated by ubiquitin unfolding. Science 365, eaax1033 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, M. W., Singh, S. Okay. & Maurizi, M. R. Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the a number of array of energetic websites in ClpP however not ATP hydrolysis. J. Biol. Chem. 269, 18209–18215 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoskins, J. R., Pak, M., Maurizi, M. R. & Wickner, S. The function of the ClpA chaperone in proteolysis by ClpAP. Proc. Natl Acad. Sci. USA 95, 12135–12140 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishikawa, T. et al. Translocation pathway of protein substrates in ClpAP protease. Proc. Natl Acad. Sci. USA 98, 4328–4333 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Effantin, G., Ishikawa, T., De Donatis, G. M., Maurizi, M. R. & Steven, A. C. Native and world mobility within the ClpA AAA+ chaperone detected by cryo-electron microscopy: useful connotations. Construction 18, 553–562 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, J. M. & Lucius, A. L. ATPγS competes with ATP for binding at Area 1 however not Area 2 throughout ClpA catalyzed polypeptide translocation. Biophys. Chem. 185, 58–69 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11, 607–615 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation by the central pore of ClpB. Cell 119, 653–665 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinnerwisch, J., Fenton, W. A., Furtak, Okay. J., Farr, G. W. & Horwich, A. L. Loops within the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, A., Baker, T. A. & Sauer, R. T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15, 1147–1151 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, S. M., Hoskins, J. R. & Wickner, S. DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals useful overlap within the N-terminal area and nucleotide-binding domain-1 pore tyrosine. J. Biol. Chem. 287, 28470–28479 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iosefson, O., Olivares, A. O., Baker, T. A. & Sauer, R. T. Dissection of axial-pore loop operate throughout unfolding and translocation by a AAA+ proteolytic machine. Cell Rep. 12, 1032–1041 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puchades, C., Sandate, C. R. & Lander, G. C. The molecular ideas governing the exercise and useful range of AAA+ proteins. Nat. Rev. Mol. Cell Biol. 21, 43–58 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puchades, C. et al. Construction of the mitochondrial inside membrane AAA+ protease YME1 offers perception into substrate processing. Science 358, eaao0464 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ripstein, Z. A., Huang, R., Augustyniak, R., Kay, L. E. & Rubinstein, J. L. Construction of a AAA+ unfoldase within the means of unfolding substrate. eLife 6, e25754 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Y. et al. Cryo-EM constructions and dynamics of substrate-engaged human 26S proteasome. Nature 565, 49–55 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, H. et al. Construction of Vps4 with round peptides and implications for translocation of two polypeptide chains by AAA+ ATPases. eLife 8, e44071 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puchades, C. et al. Distinctive structural options of the mitochondrial AAA+ protease AFG3L2 reveal the molecular foundation for exercise in well being and illness. Mol. Cell 75, 1073–1085 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei, X. et al. Constructions of the ATP-fueled ClpXP proteolytic machine sure to protein substrate. eLife 9, e52774 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei, X., Bell, T. A., Barkow, S. R., Baker, T. A. & Sauer, R. T. Structural foundation of ClpXP recognition and unfolding of ssrA-tagged substrates. eLife 9, e61496 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, H. et al. Construction of spastin sure to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation. J. Biol. Chem. 295, 435–443 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ripstein, Z. A., Vahidi, S., Houry, W. A., Rubinstein, J. L. & Kay, L. E. A processive rotary mechanism {couples} substrate unfolding and proteolysis within the ClpXP degradation equipment. eLife 9, e52158 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krissinel, E. & Henrick, Okay. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinnerwisch, J., Reid, B. G., Fenton, W. A. & Horwich, A. L. Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in secure advanced formation with the ClpP protease. J. Biol. Chem. 280, 40838–40844 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, S. Okay., Grimaud, R., Hoskins, J. R., Wickner, S. & Maurizi, M. R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl Acad. Sci. USA 97, 8898–8903 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Okay. H., Sauer, R. T. & Baker, T. A. ClpS modulates however is just not important for bacterial N-end rule degradation. Genes Dev. 21, 403–408 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoskins, J. R., Singh, S. Okay., Maurizi, M. R. & Wickner, S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl Acad. Sci. USA 97, 8892–8897 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivera-Rivera, I. Mechanism of Lively Substrate Supply by the AAA+ Protease Adaptor ClpS. PhD thesis, Massachusetts Institute of Know-how (2015); https://dspace.mit.edu/deal with/1721.1/101352

  • Barkow, S. R., Levchenko, I., Baker, T. A. & Sauer, R. T. Polypeptide translocation by the AAA+ ClpXP protease machine. Chem. Biol. 16, 605–612 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, T. A., Baker, T. A. & Sauer, R. T. Interactions between a subset of substrate facet chains and AAA+ motor pore loops decide grip throughout protein unfolding. eLife 8, e46808 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, L. & Ghosh, S. A glycine-rich area in NF-okB p105 features as a processing sign for the technology of the p50 subunit. Mol. Cell. Biol. 16, 2248–2254 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat area of the Epstein-Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA 94, 12616–12621 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharipo, A., Imreh, M., Leonchiks, A., Brändén, C. I. & Masucci, M. G. cis-Inhibition of proteasomal degradation by viral repeats: impression of size and amino acid composition. FEBS Lett. 499, 137–142 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoyt, M. A. et al. Glycine-alanine repeats impair correct substrate unfolding by the proteasome. EMBO J. 25, 1720–1729 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daskalogianni, C. et al. Gly-Ala repeats induce position- and substrate-specific regulation of 26S proteasome-dependent partial processing. J. Biol. Chem. 283, 30090–30100 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraut, D. A. et al. Sequence- and species-dependence of proteasomal processivity. ACS Chem. Biol. 7, 1444–1453 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraut, D. A. Slippery substrates impair ATP-dependent protease operate by slowing unfolding. J. Biol. Chem. 288, 34729–34735 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Too, P. H. M., Erales, J., Simen, J. D., Marjanovic, A. & Coffino, P. Slippery substrates impair operate of a bacterial protease ATPase by unbalancing translocation versus exit. J. Biol. Chem. 288, 13243–13257 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vass, R. H. & Chien, P. Important clamp loader processing by a necessary AAA+ protease in Caulobacter crescentus. Proc. Natl Acad. Sci. USA 110, 18138–18143 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokom, A. L. et al. Spiral structure of the Hsp104 disaggregase reveals the premise for polypeptide translocation. Nat. Struct. Mol. Biol. 23, 830–837 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johjima, A. et al. Microtubule severing by katanin p60 AAA+ ATPase requires the C-terminal acidic tails of each α- and β-tubulins and primary amino acid residues within the AAA+ ring pore. J. Biol. Chem. 290, 11762–11770 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfieri, C., Chang, L. & Barford, D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 559, 274–278 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandate, C. R., Szyk, A., Zehr, E. A., Lander, G. C. & Roll-Mecak, A. An allosteric community in spastin {couples} a number of actions required for microtubule severing. Nat. Struct. Mol. Biol. 26, 671–678 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zehr, E. A., Szyk, A., Szczesna, E. & Roll-Mecak, A. Katanin grips the β-tubulin tail by an electropositive double spiral to sever microtubules. Dev. Cell 52, 118–131.e6 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, M. et al. Constructions of the human LONP1 protease reveal regulatory steps concerned in protease activation. Nat. Commun. 12, 3239 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kavalchuk, M., Jomaa, A., Müller, A. U. & Weber-Ban, E. Structural foundation of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa–proteasome advanced. Nat. Commun. 13, 1–13 (2022).

    Article 

    Google Scholar
     

  • Blok, N. B. et al. Distinctive double-ring construction of the peroxisomal Pex1/Pex6 ATPase advanced revealed by cryo-electron microscopy. Proc. Natl Acad. Sci. USA 112, E4017–E4025 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, B. M. et al. The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. Nat. Commun. 9, 135 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hattendorf, D. A. & Lindquist, S. L. Cooperative kinetics of each Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J. 21, 12–21 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mogk, A. et al. Roles of particular person domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis and chaperone exercise. J. Biol. Chem. 278, 17615–17624 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Construction and mechanism of the hexameric MecA–ClpC molecular machine. Nature 471, 331–335 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodnar, N. & Rapoport, T. Towards an understanding of the Cdc48/p97 ATPase. F1000Res. 6, 1318 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodnar, N. O. & Rapoport, T. A. Molecular mechanism of substrate processing by the Cdc48 ATPase advanced. Cell 169, 722–735 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: a number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seol, J. H., Yoo, S. J., Kang, M.-S., Ha, D. B. & Chung, C. H. The 65-kDa protein derived from the interior translational begin website of the clpA gene blocks autodegradation of ClpA by the ATP-dependent protease Ti in Escherichia coli. FEBS Lett. 377, 41–43 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenniston, J. A., Baker, T. A., Fernandez, J. M. & Sauer, R. T. Linkage between ATP consumption and mechanical unfolding in the course of the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. I., Burton, R. E., Burton, B. M., Sauer, R. T. & Baker, T. A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nager, A. R., Baker, T. A. & Sauer, R. T. Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease. J. Mol. Biol. 413, 4–16 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography utilizing sturdy prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivanov, J. et al. New instruments for automated high-resolution cryo-EM construction willpower in RELION-3. eLife 7, e42166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, Y. Z. et al. Addressing most popular specimen orientation in single-particle cryo-EM by tilting. Nat. Strategies 14, 793–796 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, G. et al. EMAN2: an extensible picture processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: extra and higher reference knowledge for improved all-atom construction validation. Protein Sci. 27, 293–315 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barad, B. A. et al. EMRinger: facet chain-directed mannequin and map validation for 3D cryo-electron microscopy. Nat. Strategies 12, 943–946 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators and builders. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bateman, A. et al. UniProt: the common protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article 

    Google Scholar
     

  • Kumar, S., Stecher, G. & Tamura, Okay. MEGA7: Molecular Evolutionary Genetics Evaluation model 7.0 for larger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Model 2–a a number of sequence alignment editor and evaluation workbench. Bioinformatics 25, 1189–1191 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burton, R. E., Siddiqui, S. M., Kim, Y. I., Baker, T. A. & Sauer, R. T. Results of protein stability and construction on substrate processing by the ClpXP unfolding and degradation machine. EMBO J. 20, 3092–3100 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments