Friday, September 16, 2022
HomeMicrobiologyA multi-adenylate cyclase regulator on the flagellar tip controls African trypanosome transmission

A multi-adenylate cyclase regulator on the flagellar tip controls African trypanosome transmission


  • Zuzarte-Luís, V. & Mota, M. M. Parasite sensing of host vitamins and environmental cues. Cell Host Microbe 23, 749–758 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Landfear, S. M. & Zilberstein, D. Sensing what’s on the market – kinetoplastid parasites. Tendencies Parasitol. 35, 274–277 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walsh, B. & Hill, Okay. L. Proper place, proper time: Environmental sensing and sign transduction directs mobile differentiation and motility in Trypanosoma brucei. Mol. Microbiol. 115, 930–941 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brun, R., Blum, J., Chappuis, F. & Burri, C. Human African trypanosomiasis. Lancet 375, 148–159 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Oberholzer, M., Lopez, M. A., McLelland, B. T. & Hill, Okay. L. Social Motility in African Trypanosomes. PLoS Pathog. 6, e1000739 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kearns, D. B. A area information to bacterial swarming motility. Nat. Rev. Microbiol. 8, 634–644 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lopez, M. A., Saada, E. A. & Hill, Okay. L. Insect stage-specific adenylate cyclases regulate social motility in African trypanosomes. Eukaryot. Cell 14, 104–112 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Oberholzer, M., Saada, E. A. & Hill, Okay. L. Cyclic AMP Regulates Social Habits in African Trypanosomes. mBio 6, https://doi.org/10.1128/mBio.01954-14 (2015).

  • Shaw, S. et al. Flagellar cAMP signaling controls trypanosome development via host tissues. Nat. Commun. 10, 803 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rose, C. et al. Trypanosoma brucei colonizes the tsetse intestine by way of an immature peritrophic matrix within the proventriculus. Nat. Microbiol https://doi.org/10.1038/s41564-020-0707-z (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Schuster, S. et al. Developmental diversifications of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. Elife 6, https://doi.org/10.7554/eLife.27656 (2017).

  • Balbach, M., Beckert, V., Hansen, J. N. & Wachten, D. Shedding gentle on the position of cAMP in mammalian sperm physiology. Mol. Cell Endocrinol. 468, 111–120 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Langousis, G. & Hill, Okay. L. Motility and extra: the flagellum of Trypanosoma brucei. Nature opinions. Microbiology 12, 505–518 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W., Apagyi, Okay., McLeavy, L. & Ersfeld, Okay. Expression and mobile localisation of calpain-like proteins in Trypanosoma brucei. Mol. biochemical Parasitol. 169, 20–26 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Subota, I. et al. Proteomic evaluation of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with distinctive sub-localization and dynamics. Mol. Cell. Proteom 13, 1769–1786 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Varga, V., Moreira-Leite, F., Portman, N. & Gull, Okay. Protein range in discrete constructions on the distal tip of the trypanosome flagellum. Proc. Natl Acad. Sci. USA 114, E6546–e6555 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vélez-Ramírez, D. E. et al. APEX2 proximity proteomics resolves flagellum subdomains and identifies flagellum tip-specific proteins in Trypanosoma brucei. mSphere 6, https://doi.org/10.1128/mSphere.01090-20 (2021).

  • Saada, E. A. et al. Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei Flagellar Membrane. Eukaryot. Cell 13, 1064–1076 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Buxton, I. L. & Brunton, L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem. 258, 10233–10239 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaccolo, M., Zerio, A. & Lobo, M. J. Subcellular Group of the cAMP Signaling Pathway. Pharm. Rev. 73, 278–309 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schou, Okay. B., Pedersen, L. B. & Christensen, S. T. Ins and outs of GPCR signaling in main cilia. EMBO Rep. 16, 1099–1113 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tschaikner, P., Enzler, F., Torres-Quesada, O., Aanstad, P. & Stefan, E. Hedgehog and Gpr161: Regulating cAMP Signaling within the Main Cilium. Cells 9, 118 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schleicher, Okay. & Zaccolo, M. Defining a mobile map of cAMP nanodomains. Mol. Pharm. https://doi.org/10.1124/mol.119.118869. mol.119.118869 (2020).

    Article 

    Google Scholar
     

  • Anton, S. E. et al. Receptor-associated impartial cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 185, 1130–1142.e1111 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bachmaier, S. et al. Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma. Nat. Commun. 10, 1421 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Makin, L. & Gluenz, E. cAMP signalling in trypanosomatids: position in pathogenesis and as a drug goal. Tendencies Parasitol. 31, 373–379 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salmon, D. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response. Pathog. (Basel, Switz.) 7, 48 (2018).


    Google Scholar
     

  • Durante, I. M. et al. Giant-scale phylogenetic evaluation of trypanosomatid adenylate cyclases reveals associations with extracellular way of life and host-pathogen interaction. Genome Biol. Evol. https://doi.org/10.1093/gbe/evaa226 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Koning, H. P. et al. Pharmacological validation of Trypanosoma brucei phosphodiesterases as novel drug targets. J. Infect. Dis. 206, 229–237 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Oberholzer, M. et al. The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes which might be important for parasite virulence. FASEB 21, 720–731 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Salmon, D. et al. Cytokinesis of Trypanosoma brucei bloodstream varieties relies on expression of adenylyl cyclases of the ESAG4 or ESAG4-like subfamily. Mol. Microbiol. 84, 225–242 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gould, M. Okay. et al. Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA. Antimicrobial brokers Chemother. 57, 4882–4893 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Salmon, D. et al. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 337, 463–466 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hertz-Fowler, C. et al. Telomeric expression websites are extremely conserved in Trypanosoma brucei. PLOS ONE 3, e3527 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rotureau, B. & Van Den Abbeele, J. By the darkish continent: African trypanosome improvement within the tsetse fly. Entrance. Cell. Infect. Microbiol. 3, 53 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Savage, A. F. et al. Transcriptome profiling of Trypanosoma brucei improvement within the tsetse fly vector Glossina morsitans. PLoS ONE 11, e0168877 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Naguleswaran, A. et al. Developmental adjustments and metabolicreprogramming throughout institution of an infection and development of Trypanosoma brucei bruceithrough its insect host. bioRxiv, 2021.2005.2026.445766, https://doi.org/10.1101/2021.05.26.445766 (2021).

  • Dyer, N. A., Rose, C., Ejeh, N. O. & Acosta-Serrano, A. Flying tryps: survival and maturation of trypanosomes in tsetse flies. Tendencies Parasitol. 29, 188–196 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lopez, M. A., Nguyen, H. T., Oberholzer, M. & Hill, Okay. L. Social parasites. Curr. Opin. Microbiol. 14, 642–648 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bachmaier, S., Thanner, T. & Boshart, M. Culturing and transfection of pleomorphic Trypanosoma brucei. Strategies Mol. Biol. (Clifton, N. J.) 2116, 23–38 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Dean, S., Sunter, J. D. & Wheeler, R. J. TrypTag.org: A trypanosome genome-wide protein localisation useful resource. Tendencies Parasitol. 33, 80–82 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Malkusch, S. et al. Coordinate-based colocalization evaluation of single-molecule localization microscopy information. Histochemistry cell Biol. 137, 1–10 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Emmer, B. T., Maric, D. & Engman, D. M. Molecular mechanisms of protein and lipid focusing on to ciliary membranes. J. cell Sci. 123, 529 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kelly, F. D., Sanchez, M. A. & Landfear, S. M. Touching the floor: various roles for the flagellar membrane in kinetoplastid parasites. Microbiol. Mol. Biol. Rev. 84, e00079–00019 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wright, M. H., Paape, D., Worth, H. P., Smith, D. F. & Tate, E. W. International Profiling and Inhibition of Protein Lipidation in Vector and Host Phases of the Sleeping Illness Parasite Trypanosoma brucei. ACS Infect. Dis. 2, 427–441 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Calvo-Alvarez, E., Crouzols, A. & Rotureau, B. FLAgellum Member 8 modulates extravasculartrypanosome distribution within the mammalian host. bioRxiv, 2021.2001.2008.425862, https://doi.org/10.1101/2021.01.08.425862 (2021).

    Article 

    Google Scholar
     

  • Calvo-Alvarez, E. et al. Redistribution of FLAgellar Member 8 throughout the trypanosome life cycle: Penalties for cell destiny prediction. Cell Microbiol 23, e13347 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kolev, N. G., Ramey-Butler, Okay., Cross, G. A. M., Ullu, E. & Tschudi, C. Developmental development to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science 338, 1352–1353 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chiasson, D. et al. A unified multi-kingdom Golden Gate cloning platform. Sci. Rep. 9, 10131 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Evans, R. et al. Protein complicated prediction withAlphaFold-Multimer. bioRxiv, 2021.2010.2004.463034, https://doi.org/10.1101/2021.10.04.463034 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, S. et al. Cyclic AMP signalling and glucose metabolism mediate pH taxis by African trypanosomes. Nat. Commun. 13, 603 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goldston, A. M., Sharma, A. I., Paul, Okay. S. & Engman, D. M. Acylation in trypanosomatids: a vital course of and potential drug goal. Tendencies Parasitol. 30, 350–360 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wright, M. H., Heal, W. P., Mann, D. J. & Tate, E. W. Protein myristoylation in well being and illness. J. Chem. Biol. 3, 19–35 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Emmer, B. T. et al. International Evaluation of Protein Palmitoylation in African Trypanosomes. Eukaryot. Cell 10, 455 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bieger, B. & Essen, L. O. Structural evaluation of adenylate cyclases from Trypanosoma brucei of their monomeric state. Embo j. 20, 433–445 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Paindavoine, P. et al. A gene from the variant floor glycoprotein expression web site encodes one in every of a number of transmembrane adenylate cyclases situated on the flagellum of Trypanosoma brucei. Mol. Cell Biol. 12, 1218–1225 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rolin, S. et al. Stage-specific adenylate cyclase exercise in Trypanosoma brucei. Exp. Parasitol. 71, 350–352 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Voorheis, H. P. & Martin, B. R. Traits of the calcium-mediated mechanism activating adenylate cyclase in Trypanosoma brucei. Eur. J. Biochem 116, 471–477 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su, Q., Mehta, S. & Zhang, J. Liquid-liquid part separation: Orchestrating cell signaling via time and house. Mol. Cell 81, 4137–4146 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fort, C., Bonnefoy, S., Kohl, L. & Bastin, P. Intraflagellar transport is required for the upkeep of the trypanosome flagellum composition however not its size. J. cell Sci. 129, 3026–3041 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Imhof, S. & Roditi, I. The Social Lifetime of African Trypanosomes. Tendencies Parasitol. 31, 490–498 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Herder, S. et al. Trypanosoma brucei 29-13 pressure is inducible in however not permissive for the tsetse fly vector. Exp. Parasitol. 117, 111–114 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peacock, L., Ferris, V., Bailey, M. & Gibson, W. Fly transmission and mating of Trypanosoma brucei brucei pressure 427. Mol. biochemical Parasitol. 160, 100–106 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Schuster, S. et al. Surprising plasticity within the life cycle of Trypanosoma brucei. Elife 10, https://doi.org/10.7554/eLife.66028 (2021).

  • Vickerman, Okay., Tetley, L., Hendry, Okay. A. & Turner, C. M. Biology of African trypanosomes within the tsetse fly. Biol. Cell 64, 109–119 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • DeMarco, S. F., Saada, E. A., Lopez, M. A. & Hill, Okay. L. Identification of constructive chemotaxis within the protozoan pathogen Trypanosoma brucei. mSphere 5, https://doi.org/10.1128/mSphere.00685-20 (2020).

  • Cammann, J. et al. Emergent likelihood fluxes in confined microbial navigation. Proc. Natl. Acad. Sci. 118, e2024752118 (2021).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Naula, C., Schaub, R., Leech, V., Melville, S. & Seebeck, T. Spontaneous dimerization and leucine-zipper induced activation of the recombinant catalytic area of a brand new adenylyl cyclase of Trypanosoma brucei, GRESAG4.4B. Mol. Biochem. Parasitol. 112, 19–28 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morton, D. B. & Anderson, E. J. MsGC-beta3 varieties energetic homodimers and inactive heterodimers with NO-sensitive soluble guanylyl cyclase subunits. J. Exp. Biol. 206, 937–947 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vallin, B. et al. Novel quick isoforms of adenylyl cyclase as unfavorable regulators of cAMP manufacturing. Biochimica et. Biophysica Acta (BBA) – Mol. Cell Res. 1865, 1326–1340 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Schwede, A., Macleod, O. J., MacGregor, P. & Carrington, M. How Does the VSG Coat of Bloodstream Type African Trypanosomes Work together with Exterior Proteins. PLoS Pathog. 11, e1005259 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Heldin, C.-H., Lu, B., Evans, R. & Gutkind, J. S. Alerts and receptors. Chilly Spring Harb. Perspect. Biol. 8, a005900–a005900 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vassella, E., Reuner, B., Yutzy, B. & Boshart, M. Differentiation of African trypanosomes is managed by a density sensing mechanism which indicators cell cycle arrest by way of the cAMP pathway. J. cell Sci. 110, 2661–2671 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vassella, E. & Boshart, M. Excessive molecular mass agarose matrix helps development of bloodstream types of pleomorphic Trypanosoma brucei strains in axenic tradition. Mol. biochemical Parasitol. 82, 91–105 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Wirtz, E., Leal, S., Ochatt, C. & Cross, G. A. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. biochemical Parasitol. 99, 89–101 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Brun, R. & Schönenberger. Cultivation and in vitro cloning or procyclic tradition types of Trypanosoma brucei in a semi-defined medium. Brief communication. Acta tropica 36, 289–292 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. strategies 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adler, J. & Parmryd, I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Half A: J. Int. Soc. Anal. Cytol. 77, 733–742 (2010).

    Article 

    Google Scholar
     

  • Zinchuk, V. & Zinchuk, O. Quantitative colocalization evaluation of confocal fluorescence microscopy photos. Curr. Protoc. cell Biol. Chapter 4, Unit 4.19, https://doi.org/10.1002/0471143030.cb0419s39 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Stockmar, I. et al. Optimization of pattern preparation and inexperienced coloration imaging utilizing the mNeonGreen fluorescent protein in bacterial cells for photoactivated localization microscopy. Sci. Rep. 8, 10137 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Baddeley, A., Rubak, E. & Turner, R. Spatial Level Patterns: Methodology and Purposes with R. (Chapman and Corridor/CRC, 2015).

  • Cox, J. & Mann, M. MaxQuant permits excessive peptide identification charges, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tyanova, S., Temu, T. & Sinitcyn, P. Perseus computational Platf. Compr. Anal. (prote)omics information 13, 731–740 (2016).

    CAS 

    Google Scholar
     

  • Vizcaíno, J. A. et al. ProteomeXchange gives globally coordinated proteomics information submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Vizcaíno, J. A. et al. 2016 replace of the PRIDE database and its associated instruments. Nucleic Acids Res. 44, D447–D456 (2015). %J Nucleic Acids Analysis.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rotureau, B., Subota, I., Buisson, J. & Bastin, P. A brand new uneven division contributes to the continual manufacturing of infective trypanosomes within the tsetse fly. Dev. (Camb., Engl.) 139, 1842–1850 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Bertiaux, E., Morga, B., Blisnick, T., Rotureau, B. & Bastin, P. A Develop-and-Lock Mannequin for the Management of Flagellum Size in Trypanosomes. Curr. Biol. 28, 3802–3814.e3803 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caljon, G. et al. The dermis as a supply web site of Trypanosoma brucei for Tsetse Flies. PLoS Pathog. 12, e1005744–e1005744 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mirdita, M., Ovchinnikov, S. & Steinegger, M. ColabFold – Making protein folding accessible toall. bioRxiv, 2021.2008.2015.456425, https://doi.org/10.1101/2021.08.15.456425 (2021).

    Article 

    Google Scholar
     

  • Aksoy, S., Weiss, B. & Attardo, G. Paratransgenesis utilized for management of tsetse transmitted sleeping illness. Adv. Exp. Med. Biol. 627, 35–48 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calvo-Alvarez, E., Cren-Travaille, C., Crouzols, A. & Rotureau, B. A brand new chimeric triple reporter fusion protein as a software for in vitro and in vivo multimodal imaging to observe the event of African trypanosomes and Leishmania parasites. Infect., Genet. evolution: J. Mol. Epidemiol. Evolut. Genet. Infect. Dis. 63, 391–403 (2018).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments