Tuesday, November 1, 2022
HomeBiotechnologyA brand new protocol for whole-brain biodistribution evaluation of AAVs by tissue...

A brand new protocol for whole-brain biodistribution evaluation of AAVs by tissue clearing, light-sheet microscopy and semi-automated spatial quantification


  • Miyake Okay, Miyake N, Yamazaki Y, Shimada T, Hirai Y. Serotype-independent methodology of recombinant adeno-associated virus (AAV) vector manufacturing and purification. J Nippon Med Sch. 2012;79:394–402. https://www.jstage.jst.go.jp/article/jnms/79/6/79_394/_article.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ojala DS, Amara DP, Schaffer DV. Adeno-associated virus vectors and neurological gene remedy. Neuroscientist. 2014;21:84–98. http://nro.sagepub.com/content material/early/2014/02/19/1073858414521870.summary.

    Article 
    PubMed 

    Google Scholar
     

  • Russell DW, Alexander IE, Miller AD. DNA synthesis and topoisomerase inhibitors enhance transduction by adeno-associated virus vectors. Proc Natl Acad Sci USA. 1995;92:5719–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atchison RW, Casto BC, Hammon WM. Adenovirus-associated faulty virus particles. Science. 1965;149:754–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muzyczka N. Use of adeno-associated virus as a basic transduction vector for mammalian cells. In: Muzyczka N, editor. Viral Expression Vectors. Berlin, Heidelberg: Springer Berlin Heidelberg; 1992. 97–129. https://doi.org/10.1007/978-3-642-75608-5_5.

  • Grieger JC, Choi VW, Samulski RJ. Manufacturing and characterization of adeno-associated viral vectors. Nat Protoc. 2006;1:1412–28. http://www.nature.com/doifinder/10.1038/nprot.2006.207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of Adeno-associated viruses are broadly disseminated in human tissues. J Virol. 2004;78:6381–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005;5:285–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Vliet KM, Blouin V, Brument N, et al. The position of the adeno-associated virus capsid in gene switch. In: Strategies in molecular biology (Clifton, NJ). United States; 2008. 51–91. http://hyperlink.springer.com/10.1007/978-1-59745-210-6_2.

  • Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors within the central nervous system. Entrance Mol Neurosci. 2014;7:1–9. http://journal.frontiersin.org/article/10.3389/fnmol.2014.00076/summary.

    Article 

    Google Scholar
     

  • Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and grownup astrocytes. Nat Biotechnol. 2009;27:59–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue tradition cells. Proc Natl Acad Sci U S A. 1984;81:6466–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tratschin JD, West MH, Sandbank T, Carter BJ. A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. 1984;4:2072–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saraiva J, Nobre RJ, Pereira de Almeida L. Gene remedy for the CNS utilizing AAVs: the influence of systemic supply by AAV9. J Management Launch. 2016;241:94–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene remedy for CNS ailments. Hum Gene Ther. 2016;27:478–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naso MF, Tomkowicz B, Perry WL third, Strohl WR. Adeno-associated virus (AAV) as a vector for gene remedy. BioDrugs. 2017;31:317–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene remedy supply. Nat Rev Drug Discov. 2019;18:358–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke M-T, Fujimoto S, Imai T. SeeDB: a easy and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 2013;16:1154–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tainaka Okay, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M, et al. Entire-body imaging with single-cell decision by tissue decolorization. Cell. 2014;159:911–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson DS, Lichtman JW. Clarifying tissue clearing. Cell. 2015;162:246–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mano T, Albanese A, Dodt H-U, Erturk A, Gradinaru V, Treweek JB, et al. Entire-brain evaluation of cells and circuits by tissue clearing and light-sheet microscopy. J Neurosci. 2018;38:9330 LP–9337. http://www.jneurosci.org/content material/38/44/9330.summary.

    Article 

    Google Scholar
     

  • Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: a chemical method for fluorescence imaging and reconstruction of clear mouse mind. Nat Neurosci. 2011;14:1481–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silvestri L, Costantini I, Sacconi L, Pavone FS. Clearing of fastened tissue: a evaluation from a microscopist’s perspective. J Biomed Decide. 2016;21:81205.

    Article 

    Google Scholar
     

  • Epp JR, Niibori Y, Liz Hsiang H-L, Mercaldo V, Deisseroth Okay, Josselyn SA, et al. Optimization of CLARITY for Clearing Entire-Mind and Different Intact Organs. eNeuro. 2015;2.

  • Isogai Y, Richardson DS, Dulac C, Bergan J. Optimized protocol for imaging cleared neural tissues utilizing mild microscopy. Strategies Mol Biol. 2017;1538:137–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erturk A, Becker Okay, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs utilizing 3DISCO. Nat Protoc. 2012;7:1983–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Susaki EA, Tainaka Okay, Perrin D, Yukinaga H, Kuno A, Ueda HR. Superior CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc. 2015;10:1709–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Li G, Li Y, Li Y, Zhu H, Tang L, et al. UbasM: An efficient balanced optical clearing methodology for intact biomedical imaging. Sci Rep. 2017;7:12218.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spalteholz W Über das Durchsichtigmachen von menschlichen und tierischen Präparaten, nebst Anhang: Über Knochenfärbung. Leipzig: S. Hirzel; 1911. 48 file://catalog.hathitrust.org/Document/009621299

  • Spalteholz W Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen: Nebst Anhang, Über Knochenfärbung. Leipzig: Verlag Von S. Hirzel; 1914.

  • Jensen KHR, Berg RW. Advances and views in tissue clearing utilizing CLARITY. J Chem Neuroanat. 2017;86:19–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Web optimization J, Choe M, Kim S-Y. Clearing and labeling strategies for large-scale organic tissues. Mol Cells. 2016;39:439–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueda HR, Ertürk A, Chung Okay, Gradinaru V, Chédotal A, Tomancak P, et al. Tissue clearing and its purposes in neuroscience. Nat Rev Neurosci. 2020;21:61–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomer R, Ye L, Hsueh B, Deisseroth Okay. Superior CLARITY for fast and high-resolution imaging of intact tissues. Nat Protoc. 2014;9:1682–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a easy, fast methodology to immunolabel massive tissue samples for quantity imaging. Cell. 2014;159:896–910.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bode J, Krüwel T, Tews B. Mild sheet fluorescence microscopy mixed with optical clearing strategies as a novel imaging software in biomedical analysis. Eur Med J. 2017;1:67–74.


    Google Scholar
     

  • Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P, et al. Shrinkage-mediated imaging of total organs and organisms utilizing uDISCO. Nat Strategies. 2016;13:859–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dodt H-U, Leischner U, Schierloh A, Jahrling N, Mauch CP, Deininger Okay, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the entire mouse mind. Nat Strategies. 2007;4:331–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huisken J, Stainier DYR. Selective aircraft illumination microscopy strategies in developmental biology. Improvement. 2009;136:1963–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park SH Composition for biotissue clearing and biotissue clearing methodology utilizing identical. Daejeon, KR; 2020. Obtainable from: https://www.freepatentsonline.com/y2020/0271553.html.

  • Yates SC, Groeneboom NE, Coello C, Lichtenthaler SF, Kuhn P-H, Demuth H-U, et al. QUINT: workflow for quantification and spatial evaluation of options in histological photos from rodent mind. Entrance Neuroinform. 2019;13:75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Groeneboom NE, Yates SC, Puchades MA, Bjaalie JG. Nutil: a pre- and post-processing toolbox for histological rodent mind part photos. Entrance Neuroinform. 2020;14:37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puchades MA, Csucs G, Ledergerber D, Leergaard TB, Bjaalie JG. Spatial registration of serial microscopic mind photos to three-dimensional reference atlases with the QuickNII software. PLoS One. 2019;14:e0216796.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, et al. ilastik: interactive machine studying for (bio)picture evaluation. Nat Strategies. 2019;16:1226–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R, et al. A number of rAAV vectors effectively cross the blood-brain barrier and transduce neurons and astrocytes within the neonatal mouse central nervous system. Mol Ther. 2011;19:1440–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujishima Okay, Kawabata Galbraith Okay, Kengaku M. Dendritic self-avoidance and morphological growth of cerebellar Purkinje cells. Cerebellum. 2018;17:701–8.

    Article 
    PubMed 

    Google Scholar
     

  • Kaneko M, Yamaguchi Okay, Eiraku M, Sato M, Takata N, Kiyohara Y, et al. Reworking of monoplanar Purkinje cell dendrites throughout cerebellar circuit formation. PLoS One. 2011;6:e20108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujishima Okay, Horie R, Mochizuki A, Kengaku M. Ideas of department dynamics governing form traits of cerebellar Purkinje cell dendrites. Improvement. 2012;139:3442–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nedelescu H, Abdelhack M, Pritchard AT. Regional variations in Purkinje cell morphology within the cerebellar vermis of male mice. J Neurosci Res. 2018;96:1476–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sholl DA. Dendritic group within the neurons of the visible and motor cortices of the cat. J Anat. 1953;87:387–406.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee E, Choi J, Jo Y, Kim JY, Jang YJ, Lee HM, et al. ACT-PRESTO: Fast and constant tissue clearing and labeling methodology for three-dimensional (3D) imaging. Sci Rep. 2016;6:18631.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S-Y, Cho JH, Murray E, Bakh N, Choi H, Ohn Okay, et al. Stochastic electrotransport selectively enhances the transport of extremely electromobile molecules. Proc Natl Acad Sci USA. 2015;112:E6274–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai R, Pan C, Ghasemigharagoz A, Todorov MI, Förstera B, Zhao S, et al. Panoptic imaging of clear mice reveals whole-body neuronal projections and cranium–meninges connections. Nat Neurosci. 2019;22:317–27. https://doi.org/10.1038/s41593-018-0301-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen C-Okay, Lubeck E, et al. Single-cell phenotyping inside clear intact tissue by way of whole-body clearing. Cell. 2014;158:945–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Germain RN, Gerner MY. Excessive-dimensional cell-level evaluation of tissues with Ce3D multiplex quantity imaging. Nat Protoc. 2019;14:1708–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaeck L, Potratz M, Freuling CM, Müller T, Finke S. Excessive-resolution 3D imaging of rabies virus an infection in solvent-cleared mind tissue. J Vis Exp. 2019. https://doi.org/10.3791/59402.

  • Hou B, Zhang D, Zhao S, Wei M, Yang Z, Wang S, et al. Scalable and DiI-compatible optical clearance of the mammalian mind. Entrance Neuroanat. 2015;9:19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hama H, Hioki H, Namiki Okay, Hoshida T, Kurokawa H, Ishidate F, et al. ScaleS: an optical clearing palette for organic imaging. Nat Neurosci. 2015;18:1518–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi Y, Yu T, Xu J, Wan P, Ma Y, Zhu J, et al. FDISCO: Superior solvent-based clearing methodology for imaging entire organs. Sci Adv. 2019;5:eaau8355.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarz MK, Scherbarth A, Sprengel R, Engelhardt J, Theer P, Giese G. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS One. 2015;10:e0124650 https://doi.org/10.1371/journal.pone.0124650.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karagiannis ED, Boyden ES. Enlargement microscopy: growth and neuroscience purposes. Curr Opin Neurobiol. 2018;50:56–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gombash Lampe SE, Kaspar BK, Foust KD. Intravenous injections in neonatal mice. J Vis Exp. 2014;e52037. https://doi.org/10.3791/52037.

  • Hirai H. Progress in transduction of cerebellar Purkinje cells in vivo utilizing viral vectors. Cerebellum. 2008;7:273–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prepare dinner AA, Fields E, Watt AJ. Shedding the beat: contribution of purkinje cell firing dysfunction to illness, and its reversal. Neuroscience. 2021;462:247–61.

  • Mavroudis IA, Petrides F, Manani M, Chatzinikolaou F, Ciobică AS, Pădurariu M, et al. Purkinje cells pathology in schizophrenia. A morphometric method. Rom J Morphol Embryol. 2017;58:419–24.

    PubMed 

    Google Scholar
     

  • Erturk A, Mauch CP, Hellal F, Forstner F, Keck T, Becker Okay, et al. Three-dimensional imaging of the unsectioned grownup spinal wire to evaluate axon regeneration and glial responses after harm. Nat Med. 2011;18:166–71.

    Article 
    PubMed 

    Google Scholar
     

  • Jing D, Zhang S, Luo W, Gao X, Males Y, Ma C, et al. Tissue clearing of each onerous and smooth tissue organs with the PEGASOS methodology. Cell Res. 2018;28:803–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang A-S, Lin W-Y, Liu H-P, Pszczolkowski MA, Fu T-F, Chiu S-L, et al. Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc Natl Acad Sci USA. 2002;99:37–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW. 2,2’-thiodiethanol: a brand new water soluble mounting medium for top decision optical microscopy. Microsc Res Tech. 2007;70:1–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aoyagi Y, Kawakami R, Osanai H, Hibi T, Nemoto T. A fast optical clearing protocol utilizing 2,2′-thiodiethanol for microscopic remark of fastened mouse mind. PLoS One. 2015;10:e0116280. https://doi.org/10.1371/journal.pone.0116280.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costantini I, Ghobril J-P, Di Giovanna AP, Allegra Mascaro AL, Silvestri L, Mullenbroich MC, et al. A flexible clearing agent for multi-modal mind imaging. Sci Rep. 2015;5:9808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ, Karten HJ, et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J Neurosci. 2009;29:14553–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: a detergent- and solvent-free clearing methodology for neuronal and non-neuronal tissue. Improvement. 2013;140:1364–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Germain RN, Gerner MY. Multiplex, quantitative mobile evaluation in massive tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc Natl Acad Sci U S A. 2017;114:E7321–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Susaki EA, Tainaka Okay, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Entire-brain imaging with single-cell decision utilizing chemical cocktails and computational evaluation. Cell. 2014;157:726–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung Okay, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact organic techniques. Nature. 2013;497:332–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray E, Cho JH, Goodwin D, Ku T, Swaney J, Kim S-Y, et al. Easy, scalable proteomic imaging for high-dimensional profiling of intact techniques. Cell. 2015;163:1500–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments